songrunhe commited on
Commit
ef1cca5
·
verified ·
1 Parent(s): aeddbcd

Upload folder using huggingface_hub

Browse files
.ipynb_checkpoints/README-checkpoint.md ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ language:
5
+ - en
6
+ tags:
7
+ - chronologically consistent
8
+ - modernbert
9
+ - glue
10
+ pipeline_tag: fill-mask
11
+ inference: false
12
+ ---
13
+ # ChronoBERT
14
+
15
+ ## Model Description
16
+
17
+ ChronoBERT is a series **high-performance chronologically consistent large language models (LLM)** designed to eliminate lookahead bias and training leakage while maintain good language understanding in time-sensitive applications. The model is pretrained on **diverse, high-quality, open-source, and timestamped text** to maintain chronological consistency.
18
+
19
+ All models in the series achieve **GLUE benchmark scores that surpass standard BERT.** This approach preserves the integrity of historical analysis and enables more reliable economic and financial modeling.
20
+
21
+ - **Developed by:** Songrun He, Linying Lv, Asaf Manela, Jimmy Wu
22
+ - **Model type:** Transformer-based bidirectional encoder (ModernBERT architecture)
23
+ - **Language(s) (NLP):** English
24
+ - **License:** MIT License
25
+
26
+ ## Model Sources
27
+
28
+ - **Paper:** "Chronologically Consistent Large Language Models" (He, Lv, Manela, Wu, 2025)
29
+
30
+ ## How to Get Started with the Model
31
+
32
+ ```python
33
+ from transformers import AutoTokenizer, AutoModel
34
+
35
+ tokenizer = AutoTokenizer.from_pretrained("manelalab/chronobert-v1-19991231")
36
+ model = AutoModel.from_pretrained("manelalab/chronobert-v1-19991231")
37
+
38
+ text = "You've gotta be very careful not to mess with the space-time continuum. -- Dr. Brown, Back to the Future"
39
+
40
+ inputs = tokenizer(text, return_tensors="pt")
41
+ outputs = model(**inputs)
42
+ ```
43
+
44
+ ## Training Details
45
+
46
+ ### Training Data
47
+
48
+ - **Pretraining corpus:** Our initial model $\text{ChronoBERT}_{1999}$ is pretrained on 460 billion tokens of pre-2000, diverse, high-quality, and open-source text data to ensure no leakage of data afterwards.
49
+ - **Incremental updates:** Yearly updates from 2000 to 2024 with an additional 65 billion tokens of timestamped text.
50
+
51
+ ### Training Procedure
52
+
53
+ - **Architecture:** ModernBERT-based model with rotary embeddings and flash attention.
54
+ - **Objective:** Masked token prediction.
55
+
56
+ ## Evaluation
57
+
58
+ ### Testing Data, Factors & Metrics
59
+
60
+ - **Language understanding:** Evaluated on **GLUE benchmark** tasks.
61
+ - **Financial forecasting:** Evaluated using **return prediction task** based on Dow Jones Newswire data.
62
+ - **Comparison models:** ChronoBERT was benchmarked against **BERT, FinBERT, StoriesLM-v1-1963, and Llama 3.1**.
63
+
64
+ ### Results
65
+
66
+ - **GLUE Score:** $\text{ChronoBERT}_{1999}$ and $\text{ChronoBERT}_{2024}$ achieved GLUE score of 84.71 and 85.54 respectively, outperforming BERT (84.52).
67
+ - **Stock return predictions:** During the sample from 2008-01 to 2023-07, $\text{ChronoBERT}_{\text{Realtime}}$ achieves a long-short portfolio **Sharpe ratio of 4.80**, outperforming BERT, FinBERT, and StoriesLM-v1-1963, and comparable to **Llama 3.1 8B (4.90)**.
68
+
69
+
70
+ ## Citation
71
+
72
+ ```
73
+ @article{He2025ChronoBERT,
74
+ title={Chronologically Consistent Large Language Models},
75
+ author={He, Songrun and Lv, Linying and Manela, Asaf and Wu, Jimmy},
76
+ journal={Working Paper},
77
+ year={2025}
78
+ }
79
+ ```
80
+
81
+ ## Model Card Authors
82
+
83
+ - Songrun He (Washington University in St. Louis, [email protected])
84
+ - Linying Lv (Washington University in St. Louis, [email protected])
85
+ - Asaf Manela (Washington University in St. Louis, [email protected])
86
+ - Jimmy Wu (Washington University in St. Louis, [email protected])
87
+
88
+
89
+
README.md CHANGED
@@ -1,8 +1,18 @@
1
- # Model Card for ChronoBERT
2
-
3
- ## Model Details
4
-
5
- ### Model Description
 
 
 
 
 
 
 
 
 
 
6
 
7
  ChronoBERT is a series **high-performance chronologically consistent large language models (LLM)** designed to eliminate lookahead bias and training leakage while maintain good language understanding in time-sensitive applications. The model is pretrained on **diverse, high-quality, open-source, and timestamped text** to maintain chronological consistency.
8
 
@@ -13,7 +23,7 @@ All models in the series achieve **GLUE benchmark scores that surpass standard B
13
  - **Language(s) (NLP):** English
14
  - **License:** MIT License
15
 
16
- ### Model Sources
17
 
18
  - **Paper:** "Chronologically Consistent Large Language Models" (He, Lv, Manela, Wu, 2025)
19
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ language:
5
+ - en
6
+ tags:
7
+ - chronologically consistent
8
+ - modernbert
9
+ - glue
10
+ pipeline_tag: fill-mask
11
+ inference: false
12
+ ---
13
+ # ChronoBERT
14
+
15
+ ## Model Description
16
 
17
  ChronoBERT is a series **high-performance chronologically consistent large language models (LLM)** designed to eliminate lookahead bias and training leakage while maintain good language understanding in time-sensitive applications. The model is pretrained on **diverse, high-quality, open-source, and timestamped text** to maintain chronological consistency.
18
 
 
23
  - **Language(s) (NLP):** English
24
  - **License:** MIT License
25
 
26
+ ## Model Sources
27
 
28
  - **Paper:** "Chronologically Consistent Large Language Models" (He, Lv, Manela, Wu, 2025)
29