File size: 2,870 Bytes
7698bcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96a3ecb
 
 
249f6c9
96a3ecb
 
 
5bf0c4d
 
96a3ecb
 
 
 
 
 
 
 
 
 
 
 
 
 
7ce9db8
 
 
 
db2ddb2
7ce9db8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
---
library_name: transformers
license: bsd-3-clause
base_model: MIT/ast-finetuned-speech-commands-v2
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- precision
- recall
- f1
model-index:
- name: ast-finetuned-speech-commands-v2-finetuned-keyword-spotting-finetuned-keyword-spotting
  results:
  - task:
      name: Audio Classification
      type: audio-classification
    dataset:
      name: audiofolder
      type: audiofolder
      config: default
      split: validation
      args: default
    metrics:
    - name: Precision
      type: precision
      value: 0.9861935383961439
    - name: Recall
      type: recall
      value: 0.9861649413727126
    - name: F1
      type: f1
      value: 0.9861100898918743
---

# Audio Spectrogram Transformer (AST) Fine-Tuned on MLCommons Multilingual Spoken Words + Google Speech Commands

## Model Details
- **Model name:** `ast-mlcommons-speech-commands`
- **Architecture:** Audio Spectrogram Transformer (AST)
- **Base pre-trained checkpoint:** MIT AST fine-tuned on Google Speech Commands v0.02
- **Fine-tuning dataset:** Custom dataset drawn from MLCommons Multilingual Spoken Words corpus, augmented with `_silence_` and `_unknown_` categories sampled from Google Speech Commands v0.02
- **License:** bsd-3-clause



## Model Inputs and Outputs
- **Input:** 16 kHz mono audio, 1-second clips (or padded/truncated to 1 sec), converted to log-mel spectrograms with 128 mel bins and 10 ms hop length
- **Output:** Softmax over 80 classes (indices 0–79). Classes mapping:
  ```json
  {
    "0": "_silence_",
    "1": "_unknown_",
    "2": "air",
    // ... 3–9 omitted for brevity ...
    "9": "cake",
    "10": "car",
    // ... up to 79: "zoo"
  }

## Training Data

* Total samples: \~145,005 utterances
* **Sources:**

  * MLCommons Multilingual Spoken Words corpus (covering 40+ languages)
  * Google Speech Commands v0.02 for silence and unknown categories
* **Preprocessing:**

  * Resampling to 16 kHz
  * Fixed-length one-second windows with zero-padding or cropping

## Evaluation Results

| Metric    | Value  |
| --------- | ------ |
| Loss      | 0.0685 |
| Precision | 0.9862 |
| Recall    | 0.9862 |
| F1-score  | 0.9861 |

## Intended Uses and Limitations

* **Suitable for:**

  * Real-time keyword spotting on-device
  * Low-latency voice command detection in noisy environments
* **Limitations:**

  * May misclassify under unseen noise conditions or heavy accents
  * `_unknown_` class may not cover all out-of-vocabulary words; false positives possible
  * Performance may degrade on dialects or languages underrepresented in training

## Citation

```bibtex
@inproceedings{gong2021ast,
  title={AST: Audio Spectrogram Transformer},
  author={Gong, Yufei and Tian, Wei and Shen, Ding and Ermon, Stefano and Liu, Fei and Lazebnik, Svetlana},
  booktitle={ICASSP},
  year={2022}
}