Update README.md
Browse files
README.md
CHANGED
|
@@ -1,90 +1,28 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
-
|
| 7 |
-
|
| 8 |
-
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
-
|
| 13 |
-
|
| 14 |
-
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
- name: Recall
|
| 30 |
-
type: recall
|
| 31 |
-
value: 0.9861649413727126
|
| 32 |
-
- name: F1
|
| 33 |
-
type: f1
|
| 34 |
-
value: 0.9861100898918743
|
| 35 |
-
---
|
| 36 |
-
|
| 37 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 38 |
-
should probably proofread and complete it, then remove this comment. -->
|
| 39 |
-
|
| 40 |
-
# ast-finetuned-keyword-spotting
|
| 41 |
-
|
| 42 |
-
This model is a fine-tuned version of [MIT/ast-finetuned-speech-commands-v2](https://huggingface.co/MIT/ast-finetuned-speech-commands-v2) on the audiofolder dataset.
|
| 43 |
-
It achieves the following results on the evaluation set:
|
| 44 |
-
- Loss: 0.0685
|
| 45 |
-
- Precision: 0.9862
|
| 46 |
-
- Recall: 0.9862
|
| 47 |
-
- F1: 0.9861
|
| 48 |
-
|
| 49 |
-
## Model description
|
| 50 |
-
|
| 51 |
-
More information needed
|
| 52 |
-
|
| 53 |
-
## Intended uses & limitations
|
| 54 |
-
|
| 55 |
-
More information needed
|
| 56 |
-
|
| 57 |
-
## Training and evaluation data
|
| 58 |
-
|
| 59 |
-
More information needed
|
| 60 |
-
|
| 61 |
-
## Training procedure
|
| 62 |
-
|
| 63 |
-
### Training hyperparameters
|
| 64 |
-
|
| 65 |
-
The following hyperparameters were used during training:
|
| 66 |
-
- learning_rate: 5e-05
|
| 67 |
-
- train_batch_size: 64
|
| 68 |
-
- eval_batch_size: 64
|
| 69 |
-
- seed: 42
|
| 70 |
-
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
| 71 |
-
- lr_scheduler_type: linear
|
| 72 |
-
- lr_scheduler_warmup_ratio: 0.1
|
| 73 |
-
- num_epochs: 3
|
| 74 |
-
- mixed_precision_training: Native AMP
|
| 75 |
-
|
| 76 |
-
### Training results
|
| 77 |
-
|
| 78 |
-
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 |
|
| 79 |
-
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|
|
| 80 |
-
| 0.0682 | 1.0 | 1630 | 0.0976 | 0.9752 | 0.9751 | 0.9749 |
|
| 81 |
-
| 0.0179 | 2.0 | 3260 | 0.0743 | 0.9847 | 0.9846 | 0.9846 |
|
| 82 |
-
| 0.0008 | 3.0 | 4890 | 0.0685 | 0.9862 | 0.9862 | 0.9861 |
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
### Framework versions
|
| 86 |
-
|
| 87 |
-
- Transformers 4.51.3
|
| 88 |
-
- Pytorch 2.7.0+cu128
|
| 89 |
-
- Datasets 3.6.0
|
| 90 |
-
- Tokenizers 0.21.1
|
|
|
|
| 1 |
+
# Audio Spectrogram Transformer (AST) Fine-Tuned on MLCommons Multilingual Spoken Words + Google Speech Commands
|
| 2 |
+
|
| 3 |
+
## Model Details
|
| 4 |
+
- **Model name:** `my-ast-mlcommons-speech-commands`
|
| 5 |
+
- **Architecture:** Audio Spectrogram Transformer (AST)
|
| 6 |
+
- **Base pre-trained checkpoint:** MIT AST fine-tuned on Google Speech Commands v0.02
|
| 7 |
+
- **Fine-tuning dataset:** Custom dataset drawn from MLCommons Multilingual Spoken Words corpus, augmented with `_silence_` and `_unknown_` categories sampled from Google Speech Commands v0.02
|
| 8 |
+
- **License:** Apache 2.0
|
| 9 |
+
- **Framework:** PyTorch
|
| 10 |
+
|
| 11 |
+
## Use Case
|
| 12 |
+
- **Primary use case:** Keyword spotting and spoken-word classification in multilingual voice interfaces
|
| 13 |
+
- **Territory:** Real-time small-vocabulary speech recognition for embedded and mobile devices
|
| 14 |
+
- **Out of scope:** Large-vocabulary continuous speech recognition, speaker identification, emotion recognition
|
| 15 |
+
|
| 16 |
+
## Model Inputs and Outputs
|
| 17 |
+
- **Input:** 16 kHz mono audio, 1-second clips (or padded/truncated to 1 sec), converted to log-mel spectrograms with 128 mel bins and 10 ms hop length
|
| 18 |
+
- **Output:** Softmax over 80 classes (indices 0–79). Classes mapping:
|
| 19 |
+
```json
|
| 20 |
+
{
|
| 21 |
+
"0": "_silence_",
|
| 22 |
+
"1": "_unknown_",
|
| 23 |
+
"2": "air",
|
| 24 |
+
// ... 3–9 omitted for brevity ...
|
| 25 |
+
"9": "cake",
|
| 26 |
+
"10": "car",
|
| 27 |
+
// ... up to 79: "zoo"
|
| 28 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|