SentenceTransformer based on BAAI/bge-small-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-small-en-v1.5. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-small-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'what is my exposure to US Equities?',
'[{"get_portfolio(None,None)": "portfolio"}, {"factor_contribution(\'portfolio\',\'<DATES>\',\'asset_class\',\'us equity\',\'portfolio\')": "portfolio"}]',
'[{"get_portfolio(None,None)": "portfolio"}, {"factor_contribution(\'portfolio\',\'<DATES>\',\'sector\',\'sector industrials\',\'portfolio\')": "portfolio"}]',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6781 |
cosine_accuracy@3 | 0.8082 |
cosine_accuracy@5 | 0.863 |
cosine_accuracy@10 | 0.9315 |
cosine_precision@1 | 0.6781 |
cosine_precision@3 | 0.2694 |
cosine_precision@5 | 0.1726 |
cosine_precision@10 | 0.0932 |
cosine_recall@1 | 0.0188 |
cosine_recall@3 | 0.0225 |
cosine_recall@5 | 0.024 |
cosine_recall@10 | 0.0259 |
cosine_ndcg@10 | 0.176 |
cosine_mrr@10 | 0.7579 |
cosine_map@100 | 0.0211 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,090 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 5 tokens
- mean: 13.28 tokens
- max: 27 tokens
- min: 26 tokens
- mean: 87.73 tokens
- max: 196 tokens
- Samples:
sentence_0 sentence_1 what is my portfolio [DATES] cagr?
[{"get_portfolio(None,None)": "portfolio"}, {"get_attribute('portfolio',['gains'],'')": "portfolio"}, {"sort('portfolio','gains','desc')": "portfolio"}]
what is my [DATES] rate of return
[{"get_portfolio(None,None)": "portfolio"}, {"get_attribute('portfolio',['gains'],'')": "portfolio"}, {"sort('portfolio','gains','desc')": "portfolio"}]
show backtest of my performance [DATES]?
[{"get_portfolio(None,None)": "portfolio"}, {"get_attribute('portfolio',['gains'],'')": "portfolio"}, {"sort('portfolio','gains','desc')": "portfolio"}]
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 10per_device_eval_batch_size
: 10num_train_epochs
: 6multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 10per_device_eval_batch_size
: 10per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 6max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Click to expand
Epoch | Step | cosine_ndcg@10 |
---|---|---|
0.0183 | 2 | 0.1179 |
0.0367 | 4 | 0.1184 |
0.0550 | 6 | 0.1193 |
0.0734 | 8 | 0.1201 |
0.0917 | 10 | 0.1227 |
0.1101 | 12 | 0.1235 |
0.1284 | 14 | 0.1255 |
0.1468 | 16 | 0.1267 |
0.1651 | 18 | 0.1299 |
0.1835 | 20 | 0.1320 |
0.2018 | 22 | 0.1348 |
0.2202 | 24 | 0.1367 |
0.2385 | 26 | 0.1383 |
0.2569 | 28 | 0.1413 |
0.2752 | 30 | 0.1420 |
0.2936 | 32 | 0.1432 |
0.3119 | 34 | 0.1435 |
0.3303 | 36 | 0.1451 |
0.3486 | 38 | 0.1471 |
0.3670 | 40 | 0.1491 |
0.3853 | 42 | 0.1503 |
0.4037 | 44 | 0.1523 |
0.4220 | 46 | 0.1525 |
0.4404 | 48 | 0.1531 |
0.4587 | 50 | 0.1535 |
0.4771 | 52 | 0.1534 |
0.4954 | 54 | 0.1529 |
0.5138 | 56 | 0.1528 |
0.5321 | 58 | 0.1556 |
0.5505 | 60 | 0.1568 |
0.5688 | 62 | 0.1576 |
0.5872 | 64 | 0.1577 |
0.6055 | 66 | 0.1577 |
0.6239 | 68 | 0.1575 |
0.6422 | 70 | 0.1586 |
0.6606 | 72 | 0.1596 |
0.6789 | 74 | 0.1612 |
0.6972 | 76 | 0.1617 |
0.7156 | 78 | 0.1637 |
0.7339 | 80 | 0.1638 |
0.7523 | 82 | 0.1637 |
0.7706 | 84 | 0.1635 |
0.7890 | 86 | 0.1634 |
0.8073 | 88 | 0.1640 |
0.8257 | 90 | 0.1641 |
0.8440 | 92 | 0.1652 |
0.8624 | 94 | 0.1652 |
0.8807 | 96 | 0.1657 |
0.8991 | 98 | 0.1650 |
0.9174 | 100 | 0.1664 |
0.9358 | 102 | 0.1668 |
0.9541 | 104 | 0.1671 |
0.9725 | 106 | 0.1683 |
0.9908 | 108 | 0.1689 |
1.0 | 109 | 0.1684 |
1.0092 | 110 | 0.1673 |
1.0275 | 112 | 0.1686 |
1.0459 | 114 | 0.1680 |
1.0642 | 116 | 0.1676 |
1.0826 | 118 | 0.1668 |
1.1009 | 120 | 0.1668 |
1.1193 | 122 | 0.1671 |
1.1376 | 124 | 0.1673 |
1.1560 | 126 | 0.1666 |
1.1743 | 128 | 0.1669 |
1.1927 | 130 | 0.1668 |
1.2110 | 132 | 0.1669 |
1.2294 | 134 | 0.1673 |
1.2477 | 136 | 0.1681 |
1.2661 | 138 | 0.1683 |
1.2844 | 140 | 0.1681 |
1.3028 | 142 | 0.1674 |
1.3211 | 144 | 0.1672 |
1.3394 | 146 | 0.1668 |
1.3578 | 148 | 0.1682 |
1.3761 | 150 | 0.1689 |
1.3945 | 152 | 0.1690 |
1.4128 | 154 | 0.1693 |
1.4312 | 156 | 0.1683 |
1.4495 | 158 | 0.1683 |
1.4679 | 160 | 0.1678 |
1.4862 | 162 | 0.1695 |
1.5046 | 164 | 0.1710 |
1.5229 | 166 | 0.1717 |
1.5413 | 168 | 0.1715 |
1.5596 | 170 | 0.1698 |
1.5780 | 172 | 0.1699 |
1.5963 | 174 | 0.1694 |
1.6147 | 176 | 0.1701 |
1.6330 | 178 | 0.1693 |
1.6514 | 180 | 0.1683 |
1.6697 | 182 | 0.1692 |
1.6881 | 184 | 0.1689 |
1.7064 | 186 | 0.1696 |
1.7248 | 188 | 0.1696 |
1.7431 | 190 | 0.1700 |
1.7615 | 192 | 0.1705 |
1.7798 | 194 | 0.1718 |
1.7982 | 196 | 0.1719 |
1.8165 | 198 | 0.1723 |
1.8349 | 200 | 0.1721 |
1.8532 | 202 | 0.1717 |
1.8716 | 204 | 0.1722 |
1.8899 | 206 | 0.1722 |
1.9083 | 208 | 0.1728 |
1.9266 | 210 | 0.1734 |
1.9450 | 212 | 0.1733 |
1.9633 | 214 | 0.1742 |
1.9817 | 216 | 0.1749 |
2.0 | 218 | 0.1750 |
2.0183 | 220 | 0.1760 |
Framework Versions
- Python: 3.10.9
- Sentence Transformers: 3.3.1
- Transformers: 4.44.0
- PyTorch: 2.4.0+cu121
- Accelerate: 0.33.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 7
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for magnifi/bge-small-en-v1.5-ft-orc-0930-dates
Base model
BAAI/bge-small-en-v1.5Evaluation results
- Cosine Accuracy@1 on Unknownself-reported0.678
- Cosine Accuracy@3 on Unknownself-reported0.808
- Cosine Accuracy@5 on Unknownself-reported0.863
- Cosine Accuracy@10 on Unknownself-reported0.932
- Cosine Precision@1 on Unknownself-reported0.678
- Cosine Precision@3 on Unknownself-reported0.269
- Cosine Precision@5 on Unknownself-reported0.173
- Cosine Precision@10 on Unknownself-reported0.093
- Cosine Recall@1 on Unknownself-reported0.019
- Cosine Recall@3 on Unknownself-reported0.022