lucienbaumgartner's picture
lucienbaumgartner/mtg-spike-multilabel-distilbert
30f1156 verified
|
raw
history blame
2.47 kB
metadata
license: apache-2.0
library_name: peft
tags:
  - generated_from_trainer
base_model: distilbert-base-uncased
metrics:
  - accuracy
model-index:
  - name: multilabel_classification
    results: []

multilabel_classification

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2725
  • F1 Micro: 0.6677
  • F1 Macro: 0.6644
  • F1 Weighted: 0.6651
  • Accuracy: 0.5900

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss F1 Micro F1 Macro F1 Weighted Accuracy
No log 1.0 406 0.3793 0.0637 0.0619 0.0621 0.1413
0.4136 2.0 812 0.2789 0.6272 0.6225 0.6236 0.5346
0.2499 3.0 1218 0.2725 0.6677 0.6644 0.6651 0.5900
0.2017 4.0 1624 0.2744 0.675 0.6716 0.6721 0.6066
0.1853 5.0 2030 0.2745 0.6833 0.6797 0.6805 0.6122
0.1853 6.0 2436 0.2771 0.6781 0.6764 0.6770 0.6177
0.1621 7.0 2842 0.2810 0.6980 0.6962 0.6970 0.6343
0.1536 8.0 3248 0.2832 0.6998 0.6982 0.6988 0.6427
0.1414 9.0 3654 0.2843 0.6958 0.6943 0.6948 0.6371
0.1429 10.0 4060 0.2861 0.6928 0.6905 0.6911 0.6316

Framework versions

  • PEFT 0.11.1
  • Transformers 4.37.2
  • Pytorch 2.2.0
  • Datasets 2.19.1
  • Tokenizers 0.15.1