|
--- |
|
license: cc-by-sa-4.0 |
|
tags: |
|
- moe |
|
- merge |
|
- mergekit |
|
- lazymergekit |
|
- deepseek-ai/deepseek-coder-6.7b-instruct |
|
- defog/sqlcoder-7b-2 |
|
- Python |
|
- Javascript |
|
- sql |
|
base_model: |
|
- deepseek-ai/deepseek-coder-6.7b-instruct |
|
- defog/sqlcoder-7b-2 |
|
language: |
|
- en |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
--- |
|
<center><img src='https://i.imgur.com/0xFTuAX.png' width='450px'></center> |
|
|
|
# DevPearl-2x7B, an xtraordinary Mixture of Experts (MoE) for development |
|
|
|
DevPearl-2x7B is a Mixture of Experts (MoE) made with the following models : |
|
* [deepseek-ai/deepseek-coder-6.7b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct) |
|
* [defog/sqlcoder-7b-2](https://huggingface.co/defog/sqlcoder-7b-2) |
|
|
|
A Mixture of Experts (MoE) model represents a sophisticated architecture that amalgamates the capabilities of multiple specialized models to address a wide array of tasks within a unified framework. Within the realm of a MoE model tailored for a chat application, the integration of expertise spanning three distinct domains - chat, code, and mathematics - substantially enhances its capacity to furnish nuanced and precise responses to a diverse spectrum of user inquiries. |
|
|
|
## Configuration |
|
|
|
```yaml |
|
base_model: codellama/CodeLlama-7b-Instruct-hf |
|
experts: |
|
- source_model: deepseek-ai/deepseek-coder-6.7b-instruct |
|
positive_prompts: |
|
- "python" |
|
- "javascript" |
|
- "java" |
|
- source_model: defog/sqlcoder-7b-2 |
|
positive_prompts: |
|
- "SQL" |
|
``` |
|
|
|
## Usage |
|
|
|
```python |
|
!pip install -qU transformers bitsandbytes accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "louisbrulenaudet/DevPearl-2x7B" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, |
|
) |
|
|
|
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] |
|
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |
|
|
|
## Citing & Authors |
|
|
|
If you use this code in your research, please use the following BibTeX entry. |
|
|
|
```BibTeX |
|
@misc{louisbrulenaudet2023, |
|
author = {Louis Brulé Naudet}, |
|
title = {DevPearl-2x7B, an xtraordinary Mixture of Experts (MoE) for development}, |
|
year = {2024} |
|
howpublished = {\url{https://huggingface.co/louisbrulenaudet/DevPearl-2x7B}}, |
|
} |
|
``` |
|
|
|
## Feedback |
|
|
|
If you have any feedback, please reach out at [[email protected]](mailto:[email protected]). |