Model Card of lmqg/mt5-small-koquad-qg
This model is fine-tuned version of google/mt5-small for question generation task on the lmqg/qg_koquad (dataset_name: default) via lmqg
.
Overview
- Language model: google/mt5-small
- Language: ko
- Training data: lmqg/qg_koquad (default)
- Online Demo: https://autoqg.net/
- Repository: https://github.com/asahi417/lm-question-generation
- Paper: https://arxiv.org/abs/2210.03992
Usage
- With
lmqg
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="ko", model="lmqg/mt5-small-koquad-qg")
# model prediction
questions = model.generate_q(list_context="1990년 영화 《 남부군 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로 출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다.", list_answer="남부군")
- With
transformers
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/mt5-small-koquad-qg")
output = pipe("1990년 영화 《 <hl> 남부군 <hl> 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로 출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다.")
Evaluation
- Metric (Question Generation): raw metric file
Score | Type | Dataset | |
---|---|---|---|
BERTScore | 82.89 | default | lmqg/qg_koquad |
Bleu_1 | 25.31 | default | lmqg/qg_koquad |
Bleu_2 | 18.59 | default | lmqg/qg_koquad |
Bleu_3 | 13.98 | default | lmqg/qg_koquad |
Bleu_4 | 10.57 | default | lmqg/qg_koquad |
METEOR | 27.52 | default | lmqg/qg_koquad |
MoverScore | 82.49 | default | lmqg/qg_koquad |
ROUGE_L | 25.64 | default | lmqg/qg_koquad |
- Metric (Question & Answer Generation, Reference Answer): Each question is generated from the gold answer. raw metric file
Score | Type | Dataset | |
---|---|---|---|
QAAlignedF1Score (BERTScore) | 87.52 | default | lmqg/qg_koquad |
QAAlignedF1Score (MoverScore) | 85.15 | default | lmqg/qg_koquad |
QAAlignedPrecision (BERTScore) | 87.57 | default | lmqg/qg_koquad |
QAAlignedPrecision (MoverScore) | 85.23 | default | lmqg/qg_koquad |
QAAlignedRecall (BERTScore) | 87.49 | default | lmqg/qg_koquad |
QAAlignedRecall (MoverScore) | 85.09 | default | lmqg/qg_koquad |
- Metric (Question & Answer Generation, Pipeline Approach): Each question is generated on the answer generated by
lmqg/mt5-small-koquad-ae
. raw metric file
Score | Type | Dataset | |
---|---|---|---|
QAAlignedF1Score (BERTScore) | 80.52 | default | lmqg/qg_koquad |
QAAlignedF1Score (MoverScore) | 82.95 | default | lmqg/qg_koquad |
QAAlignedPrecision (BERTScore) | 77.56 | default | lmqg/qg_koquad |
QAAlignedPrecision (MoverScore) | 79.39 | default | lmqg/qg_koquad |
QAAlignedRecall (BERTScore) | 83.8 | default | lmqg/qg_koquad |
QAAlignedRecall (MoverScore) | 87.02 | default | lmqg/qg_koquad |
Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_koquad
- dataset_name: default
- input_types: ['paragraph_answer']
- output_types: ['question']
- prefix_types: None
- model: google/mt5-small
- max_length: 512
- max_length_output: 32
- epoch: 7
- batch: 16
- lr: 0.001
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 4
- label_smoothing: 0.15
The full configuration can be found at fine-tuning config file.
Citation
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
- Downloads last month
- 22
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Dataset used to train lmqg/mt5-small-koquad-qg
Evaluation results
- BLEU4 (Question Generation) on lmqg/qg_koquadself-reported10.570
- ROUGE-L (Question Generation) on lmqg/qg_koquadself-reported25.640
- METEOR (Question Generation) on lmqg/qg_koquadself-reported27.520
- BERTScore (Question Generation) on lmqg/qg_koquadself-reported82.890
- MoverScore (Question Generation) on lmqg/qg_koquadself-reported82.490
- QAAlignedF1Score-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer] on lmqg/qg_koquadself-reported87.520
- QAAlignedRecall-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer] on lmqg/qg_koquadself-reported87.490
- QAAlignedPrecision-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer] on lmqg/qg_koquadself-reported87.570
- QAAlignedF1Score-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer] on lmqg/qg_koquadself-reported85.150
- QAAlignedRecall-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer] on lmqg/qg_koquadself-reported85.090