t5-small-codesearchnet-multilang-python-java
This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7015
- Bleu: 0.0045
- Rouge1: 0.2194
- Rouge2: 0.0741
- Avg Length: 15.9976
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 10
- total_train_batch_size: 80
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge1 | Rouge2 | Avg Length |
---|---|---|---|---|---|---|---|
No log | 1.0 | 375 | 0.9005 | 0.0013 | 0.1397 | 0.0334 | 16.3976 |
2.3568 | 2.0 | 750 | 0.8036 | 0.0023 | 0.1737 | 0.0526 | 15.8896 |
0.7576 | 3.0 | 1125 | 0.7584 | 0.0021 | 0.1856 | 0.0558 | 15.3102 |
0.6778 | 4.0 | 1500 | 0.7298 | 0.0024 | 0.1922 | 0.0597 | 15.3544 |
0.6778 | 5.0 | 1875 | 0.7114 | 0.0037 | 0.2114 | 0.0704 | 15.7588 |
0.6206 | 6.0 | 2250 | 0.6949 | 0.0039 | 0.2093 | 0.0729 | 15.8088 |
0.5856 | 7.0 | 2625 | 0.6927 | 0.0042 | 0.2143 | 0.0711 | 16.5838 |
0.5447 | 8.0 | 3000 | 0.6867 | 0.005 | 0.2151 | 0.0717 | 17.2174 |
0.5447 | 9.0 | 3375 | 0.6895 | 0.0043 | 0.2179 | 0.0736 | 16.1068 |
0.5117 | 10.0 | 3750 | 0.6876 | 0.0038 | 0.2229 | 0.0777 | 15.5094 |
0.4892 | 11.0 | 4125 | 0.6800 | 0.0047 | 0.2201 | 0.0783 | 16.6902 |
0.4629 | 12.0 | 4500 | 0.6903 | 0.0047 | 0.2203 | 0.0771 | 16.7658 |
0.4629 | 13.0 | 4875 | 0.6947 | 0.0056 | 0.227 | 0.0777 | 16.8108 |
0.4355 | 14.0 | 5250 | 0.6999 | 0.0027 | 0.2028 | 0.0715 | 15.6776 |
0.418 | 15.0 | 5625 | 0.7015 | 0.0045 | 0.2194 | 0.0741 | 15.9976 |
Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
- Downloads last month
- 85
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.