SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-l. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Snowflake/snowflake-arctic-embed-l
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("llm-wizard/legal-ft")
# Run inference
sentences = [
'What challenges do professional journalists and publishers face that may impact their ability to enforce their intellectual property rights?',
'19 \nrespect. They feel very good about it. And in our user interface, even though we give the answer, \nwe do show the user exactly where the answer is coming from.”16 \n68. \nAs Srinivas surely knows or should know, academic standards for avoiding \nplagiarism are wholly independent from copyright law.17 Dow Jones and NYP Holdings editors \nand journalists are not graduate students working out of a library or lab, eager to have someone \nacknowledge and utilize their research. They are professional journalists and publishers – working \nunder high-pressure deadlines, sometimes in dangerous places – whose livelihoods depend on the \nenforcement and monetization of their intellectual property rights. \n69.',
'ban or prohibition on the use of AI by students. The Defendants were not trained on any policies \nor procedures for use of AI alone, never mind what they were “able to do” to students who used \nit. The entire purpose behind having such policies and procedures in place is to ensure notice, \nequity, fairness and to be sure: a level playing field for all. Making matters worse, there exists \nno adequate procedures and policies for the induction of an applicant into NHS when compared to \nother members who are inducted despite the same or similar infractions. This is a denial of student \nrights of the highest order. \n \nIn the case here, RNH was disciplined on an ad hoc and on-going basis over more than six',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7292 |
cosine_accuracy@3 | 0.8542 |
cosine_accuracy@5 | 0.9375 |
cosine_accuracy@10 | 1.0 |
cosine_precision@1 | 0.7292 |
cosine_precision@3 | 0.2847 |
cosine_precision@5 | 0.1875 |
cosine_precision@10 | 0.1 |
cosine_recall@1 | 0.7292 |
cosine_recall@3 | 0.8542 |
cosine_recall@5 | 0.9375 |
cosine_recall@10 | 1.0 |
cosine_ndcg@10 | 0.8576 |
cosine_mrr@10 | 0.8125 |
cosine_map@100 | 0.8125 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 400 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 400 samples:
sentence_0 sentence_1 type string string details - min: 10 tokens
- mean: 20.93 tokens
- max: 35 tokens
- min: 25 tokens
- mean: 140.37 tokens
- max: 260 tokens
- Samples:
sentence_0 sentence_1 What provisions of the 2023-2024 Handbook were referenced regarding the use of AI and academic integrity?
13
procedure, expectation, conduct, discipline, sanction or consequence for the use of AI. Id. at ¶102.
Under these circumstances, the use of AI was not a violation of the then existing “Academic
Integrity: Cheating and Plagiarism” provisions of the 2023-2024 Handbook. Id. at ¶104. As such,
accusations of cheating, plagiarism, and academic misconduct or dishonesty were not supported
by the record evidence which, at all times relevant, the Defendants have had in their care, custody
and control. Id. at ¶105.
While there is much dispute as to whether the use of generative AI constitutes plagiarism,
plagiarism is defined as the practice of taking someone else’s work or ideas and passing them offHow is plagiarism defined in the context provided?
13
procedure, expectation, conduct, discipline, sanction or consequence for the use of AI. Id. at ¶102.
Under these circumstances, the use of AI was not a violation of the then existing “Academic
Integrity: Cheating and Plagiarism” provisions of the 2023-2024 Handbook. Id. at ¶104. As such,
accusations of cheating, plagiarism, and academic misconduct or dishonesty were not supported
by the record evidence which, at all times relevant, the Defendants have had in their care, custody
and control. Id. at ¶105.
While there is much dispute as to whether the use of generative AI constitutes plagiarism,
plagiarism is defined as the practice of taking someone else’s work or ideas and passing them offWhat is the case number associated with the document filed on 10/21/24?
program-ad-revenue-sharing-ai-time-fortune-der-spiegel.
Case 1:24-cv-07984 Document 1 Filed 10/21/24 Page 21 of 42 - Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 10per_device_eval_batch_size
: 10num_train_epochs
: 10multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 10per_device_eval_batch_size
: 10per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | cosine_ndcg@10 |
---|---|---|
1.0 | 40 | 0.8182 |
1.25 | 50 | 0.8172 |
2.0 | 80 | 0.8112 |
2.5 | 100 | 0.8414 |
3.0 | 120 | 0.8236 |
3.75 | 150 | 0.7962 |
4.0 | 160 | 0.7930 |
5.0 | 200 | 0.8536 |
6.0 | 240 | 0.8263 |
6.25 | 250 | 0.8257 |
7.0 | 280 | 0.8475 |
7.5 | 300 | 0.8505 |
8.0 | 320 | 0.8499 |
8.75 | 350 | 0.8582 |
9.0 | 360 | 0.8576 |
10.0 | 400 | 0.8576 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.2
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for llm-wizard/legal-ft
Base model
Snowflake/snowflake-arctic-embed-lEvaluation results
- Cosine Accuracy@1 on Unknownself-reported0.729
- Cosine Accuracy@3 on Unknownself-reported0.854
- Cosine Accuracy@5 on Unknownself-reported0.938
- Cosine Accuracy@10 on Unknownself-reported1.000
- Cosine Precision@1 on Unknownself-reported0.729
- Cosine Precision@3 on Unknownself-reported0.285
- Cosine Precision@5 on Unknownself-reported0.188
- Cosine Precision@10 on Unknownself-reported0.100
- Cosine Recall@1 on Unknownself-reported0.729
- Cosine Recall@3 on Unknownself-reported0.854