rootxsli
init
ee66797
metadata
tags:
  - mteb
model-index:
  - name: bert_1b3_mixlang_newstep3
    results:
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en)
          config: en
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 70.11940298507463
          - type: ap
            value: 32.37756187516329
          - type: f1
            value: 63.92312669545795
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_polarity
          name: MTEB AmazonPolarityClassification
          config: default
          split: test
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
        metrics:
          - type: accuracy
            value: 92.950675
          - type: ap
            value: 89.69186819088316
          - type: f1
            value: 92.94108521905532
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (en)
          config: en
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 50.522
          - type: f1
            value: 48.76020527037862
      - task:
          type: Retrieval
        dataset:
          type: arguana
          name: MTEB ArguAna
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 14.865
          - type: map_at_10
            value: 26.026
          - type: map_at_100
            value: 27.586
          - type: map_at_1000
            value: 27.622999999999998
          - type: map_at_3
            value: 21.859
          - type: map_at_5
            value: 24.049
          - type: mrr_at_1
            value: 15.504999999999999
          - type: mrr_at_10
            value: 26.265
          - type: mrr_at_100
            value: 27.810000000000002
          - type: mrr_at_1000
            value: 27.847
          - type: mrr_at_3
            value: 22.06
          - type: mrr_at_5
            value: 24.247
          - type: ndcg_at_1
            value: 14.865
          - type: ndcg_at_10
            value: 32.934999999999995
          - type: ndcg_at_100
            value: 40.627
          - type: ndcg_at_1000
            value: 41.524
          - type: ndcg_at_3
            value: 24.153
          - type: ndcg_at_5
            value: 28.133999999999997
          - type: precision_at_1
            value: 14.865
          - type: precision_at_10
            value: 5.541
          - type: precision_at_100
            value: 0.9159999999999999
          - type: precision_at_1000
            value: 0.099
          - type: precision_at_3
            value: 10.266
          - type: precision_at_5
            value: 8.108
          - type: recall_at_1
            value: 14.865
          - type: recall_at_10
            value: 55.405
          - type: recall_at_100
            value: 91.607
          - type: recall_at_1000
            value: 98.506
          - type: recall_at_3
            value: 30.797
          - type: recall_at_5
            value: 40.541
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-p2p
          name: MTEB ArxivClusteringP2P
          config: default
          split: test
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
        metrics:
          - type: v_measure
            value: 47.028296913559814
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-s2s
          name: MTEB ArxivClusteringS2S
          config: default
          split: test
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
        metrics:
          - type: v_measure
            value: 38.38123118365735
      - task:
          type: Reranking
        dataset:
          type: mteb/askubuntudupquestions-reranking
          name: MTEB AskUbuntuDupQuestions
          config: default
          split: test
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
        metrics:
          - type: map
            value: 58.9616553564134
          - type: mrr
            value: 72.16033504814668
      - task:
          type: STS
        dataset:
          type: mteb/biosses-sts
          name: MTEB BIOSSES
          config: default
          split: test
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
        metrics:
          - type: cos_sim_pearson
            value: 87.00899493452621
          - type: cos_sim_spearman
            value: 83.85673000958819
          - type: euclidean_pearson
            value: 85.65567511199598
          - type: euclidean_spearman
            value: 83.90311660870698
          - type: manhattan_pearson
            value: 85.37147829428248
          - type: manhattan_spearman
            value: 83.74588411039522
      - task:
          type: Classification
        dataset:
          type: mteb/banking77
          name: MTEB Banking77Classification
          config: default
          split: test
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
        metrics:
          - type: accuracy
            value: 75.5909090909091
          - type: f1
            value: 74.476632049175
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-p2p
          name: MTEB BiorxivClusteringP2P
          config: default
          split: test
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
        metrics:
          - type: v_measure
            value: 38.981180962194216
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-s2s
          name: MTEB BiorxivClusteringS2S
          config: default
          split: test
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
        metrics:
          - type: v_measure
            value: 34.9394829907367
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackAndroidRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 31.277
          - type: map_at_10
            value: 42.153
          - type: map_at_100
            value: 43.683
          - type: map_at_1000
            value: 43.817
          - type: map_at_3
            value: 38.454
          - type: map_at_5
            value: 40.721000000000004
          - type: mrr_at_1
            value: 38.913
          - type: mrr_at_10
            value: 48.232
          - type: mrr_at_100
            value: 48.888
          - type: mrr_at_1000
            value: 48.929
          - type: mrr_at_3
            value: 45.279
          - type: mrr_at_5
            value: 47.089
          - type: ndcg_at_1
            value: 38.913
          - type: ndcg_at_10
            value: 48.518
          - type: ndcg_at_100
            value: 53.797
          - type: ndcg_at_1000
            value: 55.754999999999995
          - type: ndcg_at_3
            value: 43.122
          - type: ndcg_at_5
            value: 45.869
          - type: precision_at_1
            value: 38.913
          - type: precision_at_10
            value: 9.413
          - type: precision_at_100
            value: 1.567
          - type: precision_at_1000
            value: 0.20600000000000002
          - type: precision_at_3
            value: 20.791999999999998
          - type: precision_at_5
            value: 15.193000000000001
          - type: recall_at_1
            value: 31.277
          - type: recall_at_10
            value: 60.475
          - type: recall_at_100
            value: 82.675
          - type: recall_at_1000
            value: 95.298
          - type: recall_at_3
            value: 44.388
          - type: recall_at_5
            value: 52.242999999999995
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackEnglishRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 25.593
          - type: map_at_10
            value: 35.089999999999996
          - type: map_at_100
            value: 36.269
          - type: map_at_1000
            value: 36.419000000000004
          - type: map_at_3
            value: 32.449
          - type: map_at_5
            value: 33.952
          - type: mrr_at_1
            value: 32.484
          - type: mrr_at_10
            value: 40.725
          - type: mrr_at_100
            value: 41.465999999999994
          - type: mrr_at_1000
            value: 41.521
          - type: mrr_at_3
            value: 38.757999999999996
          - type: mrr_at_5
            value: 39.869
          - type: ndcg_at_1
            value: 32.484
          - type: ndcg_at_10
            value: 40.384
          - type: ndcg_at_100
            value: 44.984
          - type: ndcg_at_1000
            value: 47.528
          - type: ndcg_at_3
            value: 36.77
          - type: ndcg_at_5
            value: 38.505
          - type: precision_at_1
            value: 32.484
          - type: precision_at_10
            value: 7.866
          - type: precision_at_100
            value: 1.2959999999999998
          - type: precision_at_1000
            value: 0.185
          - type: precision_at_3
            value: 18.195
          - type: precision_at_5
            value: 13.032
          - type: recall_at_1
            value: 25.593
          - type: recall_at_10
            value: 49.289
          - type: recall_at_100
            value: 69.84700000000001
          - type: recall_at_1000
            value: 86.329
          - type: recall_at_3
            value: 38.51
          - type: recall_at_5
            value: 43.349
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGamingRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 35.116
          - type: map_at_10
            value: 45.908
          - type: map_at_100
            value: 46.979
          - type: map_at_1000
            value: 47.046
          - type: map_at_3
            value: 42.724000000000004
          - type: map_at_5
            value: 44.507999999999996
          - type: mrr_at_1
            value: 40.313
          - type: mrr_at_10
            value: 49.195
          - type: mrr_at_100
            value: 49.996
          - type: mrr_at_1000
            value: 50.03300000000001
          - type: mrr_at_3
            value: 46.708
          - type: mrr_at_5
            value: 48.187999999999995
          - type: ndcg_at_1
            value: 40.313
          - type: ndcg_at_10
            value: 51.43600000000001
          - type: ndcg_at_100
            value: 55.873
          - type: ndcg_at_1000
            value: 57.288
          - type: ndcg_at_3
            value: 46.038000000000004
          - type: ndcg_at_5
            value: 48.729
          - type: precision_at_1
            value: 40.313
          - type: precision_at_10
            value: 8.382000000000001
          - type: precision_at_100
            value: 1.145
          - type: precision_at_1000
            value: 0.132
          - type: precision_at_3
            value: 20.480999999999998
          - type: precision_at_5
            value: 14.219000000000001
          - type: recall_at_1
            value: 35.116
          - type: recall_at_10
            value: 64.524
          - type: recall_at_100
            value: 83.859
          - type: recall_at_1000
            value: 93.977
          - type: recall_at_3
            value: 50.102999999999994
          - type: recall_at_5
            value: 56.818000000000005
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGisRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 18.488
          - type: map_at_10
            value: 25.667
          - type: map_at_100
            value: 26.541999999999998
          - type: map_at_1000
            value: 26.637
          - type: map_at_3
            value: 23.483
          - type: map_at_5
            value: 24.667
          - type: mrr_at_1
            value: 20
          - type: mrr_at_10
            value: 27.178
          - type: mrr_at_100
            value: 27.989000000000004
          - type: mrr_at_1000
            value: 28.07
          - type: mrr_at_3
            value: 25.122
          - type: mrr_at_5
            value: 26.275
          - type: ndcg_at_1
            value: 20
          - type: ndcg_at_10
            value: 29.736
          - type: ndcg_at_100
            value: 34.358
          - type: ndcg_at_1000
            value: 37.036
          - type: ndcg_at_3
            value: 25.405
          - type: ndcg_at_5
            value: 27.441
          - type: precision_at_1
            value: 20
          - type: precision_at_10
            value: 4.712000000000001
          - type: precision_at_100
            value: 0.751
          - type: precision_at_1000
            value: 0.101
          - type: precision_at_3
            value: 10.885
          - type: precision_at_5
            value: 7.706
          - type: recall_at_1
            value: 18.488
          - type: recall_at_10
            value: 40.83
          - type: recall_at_100
            value: 62.707
          - type: recall_at_1000
            value: 83.41199999999999
          - type: recall_at_3
            value: 29.21
          - type: recall_at_5
            value: 34.009
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackMathematicaRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 9.532
          - type: map_at_10
            value: 15.193000000000001
          - type: map_at_100
            value: 16.381
          - type: map_at_1000
            value: 16.524
          - type: map_at_3
            value: 13.386000000000001
          - type: map_at_5
            value: 14.261
          - type: mrr_at_1
            value: 11.940000000000001
          - type: mrr_at_10
            value: 18.285
          - type: mrr_at_100
            value: 19.373
          - type: mrr_at_1000
            value: 19.467000000000002
          - type: mrr_at_3
            value: 16.252
          - type: mrr_at_5
            value: 17.26
          - type: ndcg_at_1
            value: 11.940000000000001
          - type: ndcg_at_10
            value: 19.095000000000002
          - type: ndcg_at_100
            value: 25.214
          - type: ndcg_at_1000
            value: 28.619
          - type: ndcg_at_3
            value: 15.482000000000001
          - type: ndcg_at_5
            value: 16.892
          - type: precision_at_1
            value: 11.940000000000001
          - type: precision_at_10
            value: 3.744
          - type: precision_at_100
            value: 0.815
          - type: precision_at_1000
            value: 0.124
          - type: precision_at_3
            value: 7.710999999999999
          - type: precision_at_5
            value: 5.647
          - type: recall_at_1
            value: 9.532
          - type: recall_at_10
            value: 28.026
          - type: recall_at_100
            value: 55.253
          - type: recall_at_1000
            value: 79.86999999999999
          - type: recall_at_3
            value: 18.084
          - type: recall_at_5
            value: 21.553
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackPhysicsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 23.416
          - type: map_at_10
            value: 32.649
          - type: map_at_100
            value: 33.983000000000004
          - type: map_at_1000
            value: 34.107
          - type: map_at_3
            value: 29.254
          - type: map_at_5
            value: 31.339
          - type: mrr_at_1
            value: 28.778
          - type: mrr_at_10
            value: 37.513999999999996
          - type: mrr_at_100
            value: 38.458999999999996
          - type: mrr_at_1000
            value: 38.517
          - type: mrr_at_3
            value: 34.585
          - type: mrr_at_5
            value: 36.514
          - type: ndcg_at_1
            value: 28.778
          - type: ndcg_at_10
            value: 38.233
          - type: ndcg_at_100
            value: 44.14
          - type: ndcg_at_1000
            value: 46.583000000000006
          - type: ndcg_at_3
            value: 32.718
          - type: ndcg_at_5
            value: 35.778999999999996
          - type: precision_at_1
            value: 28.778
          - type: precision_at_10
            value: 7.2090000000000005
          - type: precision_at_100
            value: 1.194
          - type: precision_at_1000
            value: 0.16
          - type: precision_at_3
            value: 15.495999999999999
          - type: precision_at_5
            value: 11.781
          - type: recall_at_1
            value: 23.416
          - type: recall_at_10
            value: 50.063
          - type: recall_at_100
            value: 75.4
          - type: recall_at_1000
            value: 91.74799999999999
          - type: recall_at_3
            value: 35.113
          - type: recall_at_5
            value: 42.620999999999995
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackProgrammersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 18.891
          - type: map_at_10
            value: 28.000000000000004
          - type: map_at_100
            value: 29.354999999999997
          - type: map_at_1000
            value: 29.453000000000003
          - type: map_at_3
            value: 24.551000000000002
          - type: map_at_5
            value: 26.383000000000003
          - type: mrr_at_1
            value: 23.402
          - type: mrr_at_10
            value: 32.308
          - type: mrr_at_100
            value: 33.242
          - type: mrr_at_1000
            value: 33.294000000000004
          - type: mrr_at_3
            value: 29.262
          - type: mrr_at_5
            value: 30.997000000000003
          - type: ndcg_at_1
            value: 23.402
          - type: ndcg_at_10
            value: 33.932
          - type: ndcg_at_100
            value: 39.925
          - type: ndcg_at_1000
            value: 42.126999999999995
          - type: ndcg_at_3
            value: 27.816999999999997
          - type: ndcg_at_5
            value: 30.554
          - type: precision_at_1
            value: 23.402
          - type: precision_at_10
            value: 6.747
          - type: precision_at_100
            value: 1.147
          - type: precision_at_1000
            value: 0.15
          - type: precision_at_3
            value: 13.469999999999999
          - type: precision_at_5
            value: 10.32
          - type: recall_at_1
            value: 18.891
          - type: recall_at_10
            value: 47.58
          - type: recall_at_100
            value: 73.668
          - type: recall_at_1000
            value: 88.77000000000001
          - type: recall_at_3
            value: 30.726
          - type: recall_at_5
            value: 37.547000000000004
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 20.303499999999996
          - type: map_at_10
            value: 28.263499999999997
          - type: map_at_100
            value: 29.431250000000002
          - type: map_at_1000
            value: 29.555166666666665
          - type: map_at_3
            value: 25.59133333333333
          - type: map_at_5
            value: 27.091500000000003
          - type: mrr_at_1
            value: 24.19725
          - type: mrr_at_10
            value: 31.803750000000004
          - type: mrr_at_100
            value: 32.691916666666664
          - type: mrr_at_1000
            value: 32.760083333333334
          - type: mrr_at_3
            value: 29.447749999999996
          - type: mrr_at_5
            value: 30.79858333333334
          - type: ndcg_at_1
            value: 24.19725
          - type: ndcg_at_10
            value: 33.11925000000001
          - type: ndcg_at_100
            value: 38.384916666666655
          - type: ndcg_at_1000
            value: 40.991499999999995
          - type: ndcg_at_3
            value: 28.5115
          - type: ndcg_at_5
            value: 30.718833333333333
          - type: precision_at_1
            value: 24.19725
          - type: precision_at_10
            value: 6.061666666666666
          - type: precision_at_100
            value: 1.0404166666666665
          - type: precision_at_1000
            value: 0.14583333333333337
          - type: precision_at_3
            value: 13.347083333333334
          - type: precision_at_5
            value: 9.747916666666667
          - type: recall_at_1
            value: 20.303499999999996
          - type: recall_at_10
            value: 43.93183333333334
          - type: recall_at_100
            value: 67.47800000000001
          - type: recall_at_1000
            value: 85.91425000000001
          - type: recall_at_3
            value: 31.160083333333333
          - type: recall_at_5
            value: 36.76633333333333
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackStatsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 12.666
          - type: map_at_10
            value: 18.448999999999998
          - type: map_at_100
            value: 19.448
          - type: map_at_1000
            value: 19.54
          - type: map_at_3
            value: 16.581000000000003
          - type: map_at_5
            value: 17.485999999999997
          - type: mrr_at_1
            value: 14.11
          - type: mrr_at_10
            value: 19.796
          - type: mrr_at_100
            value: 20.785999999999998
          - type: mrr_at_1000
            value: 20.861
          - type: mrr_at_3
            value: 18.175
          - type: mrr_at_5
            value: 18.926000000000002
          - type: ndcg_at_1
            value: 14.11
          - type: ndcg_at_10
            value: 21.83
          - type: ndcg_at_100
            value: 27.017999999999997
          - type: ndcg_at_1000
            value: 29.520999999999997
          - type: ndcg_at_3
            value: 18.358
          - type: ndcg_at_5
            value: 19.719
          - type: precision_at_1
            value: 14.11
          - type: precision_at_10
            value: 3.819
          - type: precision_at_100
            value: 0.701
          - type: precision_at_1000
            value: 0.097
          - type: precision_at_3
            value: 8.384
          - type: precision_at_5
            value: 5.92
          - type: recall_at_1
            value: 12.666
          - type: recall_at_10
            value: 30.746000000000002
          - type: recall_at_100
            value: 54.675
          - type: recall_at_1000
            value: 73.57900000000001
          - type: recall_at_3
            value: 21.196
          - type: recall_at_5
            value: 24.552
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackTexRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 12.53
          - type: map_at_10
            value: 17.881
          - type: map_at_100
            value: 18.923000000000002
          - type: map_at_1000
            value: 19.049
          - type: map_at_3
            value: 16.088
          - type: map_at_5
            value: 17
          - type: mrr_at_1
            value: 15.244
          - type: mrr_at_10
            value: 20.906
          - type: mrr_at_100
            value: 21.83
          - type: mrr_at_1000
            value: 21.913
          - type: mrr_at_3
            value: 19.104
          - type: mrr_at_5
            value: 19.994999999999997
          - type: ndcg_at_1
            value: 15.244
          - type: ndcg_at_10
            value: 21.541
          - type: ndcg_at_100
            value: 26.799
          - type: ndcg_at_1000
            value: 29.927
          - type: ndcg_at_3
            value: 18.208
          - type: ndcg_at_5
            value: 19.573999999999998
          - type: precision_at_1
            value: 15.244
          - type: precision_at_10
            value: 4.04
          - type: precision_at_100
            value: 0.808
          - type: precision_at_1000
            value: 0.125
          - type: precision_at_3
            value: 8.672
          - type: precision_at_5
            value: 6.283999999999999
          - type: recall_at_1
            value: 12.53
          - type: recall_at_10
            value: 29.601
          - type: recall_at_100
            value: 53.615
          - type: recall_at_1000
            value: 76.344
          - type: recall_at_3
            value: 20.159
          - type: recall_at_5
            value: 23.746000000000002
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackUnixRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 21.849
          - type: map_at_10
            value: 28.937
          - type: map_at_100
            value: 30.003999999999998
          - type: map_at_1000
            value: 30.122
          - type: map_at_3
            value: 26.150000000000002
          - type: map_at_5
            value: 27.744000000000003
          - type: mrr_at_1
            value: 25.093
          - type: mrr_at_10
            value: 32.143
          - type: mrr_at_100
            value: 33.053
          - type: mrr_at_1000
            value: 33.134
          - type: mrr_at_3
            value: 29.586000000000002
          - type: mrr_at_5
            value: 31.116
          - type: ndcg_at_1
            value: 25.093
          - type: ndcg_at_10
            value: 33.631
          - type: ndcg_at_100
            value: 38.893
          - type: ndcg_at_1000
            value: 41.692
          - type: ndcg_at_3
            value: 28.497
          - type: ndcg_at_5
            value: 31.028
          - type: precision_at_1
            value: 25.093
          - type: precision_at_10
            value: 5.765
          - type: precision_at_100
            value: 0.947
          - type: precision_at_1000
            value: 0.13
          - type: precision_at_3
            value: 12.623999999999999
          - type: precision_at_5
            value: 9.347
          - type: recall_at_1
            value: 21.849
          - type: recall_at_10
            value: 44.767
          - type: recall_at_100
            value: 68.298
          - type: recall_at_1000
            value: 88.107
          - type: recall_at_3
            value: 30.968
          - type: recall_at_5
            value: 37.19
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWebmastersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 18.409
          - type: map_at_10
            value: 27.750999999999998
          - type: map_at_100
            value: 29.241
          - type: map_at_1000
            value: 29.467
          - type: map_at_3
            value: 24.29
          - type: map_at_5
            value: 26.448
          - type: mrr_at_1
            value: 22.53
          - type: mrr_at_10
            value: 31.887999999999998
          - type: mrr_at_100
            value: 32.89
          - type: mrr_at_1000
            value: 32.956
          - type: mrr_at_3
            value: 28.854000000000003
          - type: mrr_at_5
            value: 30.751
          - type: ndcg_at_1
            value: 22.53
          - type: ndcg_at_10
            value: 33.827
          - type: ndcg_at_100
            value: 39.749
          - type: ndcg_at_1000
            value: 42.677
          - type: ndcg_at_3
            value: 28.101
          - type: ndcg_at_5
            value: 31.380999999999997
          - type: precision_at_1
            value: 22.53
          - type: precision_at_10
            value: 6.976
          - type: precision_at_100
            value: 1.443
          - type: precision_at_1000
            value: 0.23700000000000002
          - type: precision_at_3
            value: 13.966000000000001
          - type: precision_at_5
            value: 10.909
          - type: recall_at_1
            value: 18.409
          - type: recall_at_10
            value: 46.217000000000006
          - type: recall_at_100
            value: 72.882
          - type: recall_at_1000
            value: 91.625
          - type: recall_at_3
            value: 30.64
          - type: recall_at_5
            value: 38.948
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWordpressRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 15.875
          - type: map_at_10
            value: 21.484
          - type: map_at_100
            value: 22.367
          - type: map_at_1000
            value: 22.481
          - type: map_at_3
            value: 19.686
          - type: map_at_5
            value: 20.589
          - type: mrr_at_1
            value: 17.560000000000002
          - type: mrr_at_10
            value: 23.474999999999998
          - type: mrr_at_100
            value: 24.331
          - type: mrr_at_1000
            value: 24.426000000000002
          - type: mrr_at_3
            value: 21.688
          - type: mrr_at_5
            value: 22.603
          - type: ndcg_at_1
            value: 17.560000000000002
          - type: ndcg_at_10
            value: 25.268
          - type: ndcg_at_100
            value: 29.869
          - type: ndcg_at_1000
            value: 33.145
          - type: ndcg_at_3
            value: 21.622
          - type: ndcg_at_5
            value: 23.155
          - type: precision_at_1
            value: 17.560000000000002
          - type: precision_at_10
            value: 4.067
          - type: precision_at_100
            value: 0.6709999999999999
          - type: precision_at_1000
            value: 0.10300000000000001
          - type: precision_at_3
            value: 9.489
          - type: precision_at_5
            value: 6.617000000000001
          - type: recall_at_1
            value: 15.875
          - type: recall_at_10
            value: 35.064
          - type: recall_at_100
            value: 56.857
          - type: recall_at_1000
            value: 81.91199999999999
          - type: recall_at_3
            value: 24.823999999999998
          - type: recall_at_5
            value: 28.62
      - task:
          type: Retrieval
        dataset:
          type: climate-fever
          name: MTEB ClimateFEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 10.637
          - type: map_at_10
            value: 18.401999999999997
          - type: map_at_100
            value: 20.121
          - type: map_at_1000
            value: 20.305999999999997
          - type: map_at_3
            value: 15.348
          - type: map_at_5
            value: 16.841
          - type: mrr_at_1
            value: 23.909
          - type: mrr_at_10
            value: 34.512
          - type: mrr_at_100
            value: 35.485
          - type: mrr_at_1000
            value: 35.528999999999996
          - type: mrr_at_3
            value: 31.368000000000002
          - type: mrr_at_5
            value: 33.137
          - type: ndcg_at_1
            value: 23.909
          - type: ndcg_at_10
            value: 25.94
          - type: ndcg_at_100
            value: 33.116
          - type: ndcg_at_1000
            value: 36.502
          - type: ndcg_at_3
            value: 21.046
          - type: ndcg_at_5
            value: 22.715
          - type: precision_at_1
            value: 23.909
          - type: precision_at_10
            value: 8.195
          - type: precision_at_100
            value: 1.593
          - type: precision_at_1000
            value: 0.22200000000000003
          - type: precision_at_3
            value: 15.744
          - type: precision_at_5
            value: 12.142999999999999
          - type: recall_at_1
            value: 10.637
          - type: recall_at_10
            value: 31.251
          - type: recall_at_100
            value: 56.477999999999994
          - type: recall_at_1000
            value: 75.52600000000001
          - type: recall_at_3
            value: 19.482
          - type: recall_at_5
            value: 24.145
      - task:
          type: Retrieval
        dataset:
          type: dbpedia-entity
          name: MTEB DBPedia
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 7.786999999999999
          - type: map_at_10
            value: 16.182
          - type: map_at_100
            value: 22.698
          - type: map_at_1000
            value: 24.192
          - type: map_at_3
            value: 11.84
          - type: map_at_5
            value: 13.602
          - type: mrr_at_1
            value: 56.99999999999999
          - type: mrr_at_10
            value: 66.702
          - type: mrr_at_100
            value: 67.291
          - type: mrr_at_1000
            value: 67.301
          - type: mrr_at_3
            value: 64.708
          - type: mrr_at_5
            value: 65.946
          - type: ndcg_at_1
            value: 46.75
          - type: ndcg_at_10
            value: 35.469
          - type: ndcg_at_100
            value: 40.077
          - type: ndcg_at_1000
            value: 47.252
          - type: ndcg_at_3
            value: 39.096
          - type: ndcg_at_5
            value: 36.766
          - type: precision_at_1
            value: 56.99999999999999
          - type: precision_at_10
            value: 28.175
          - type: precision_at_100
            value: 9.423
          - type: precision_at_1000
            value: 2.017
          - type: precision_at_3
            value: 41.667
          - type: precision_at_5
            value: 35.199999999999996
          - type: recall_at_1
            value: 7.786999999999999
          - type: recall_at_10
            value: 21.428
          - type: recall_at_100
            value: 45.86
          - type: recall_at_1000
            value: 68.83
          - type: recall_at_3
            value: 12.992
          - type: recall_at_5
            value: 16.091
      - task:
          type: Classification
        dataset:
          type: mteb/emotion
          name: MTEB EmotionClassification
          config: default
          split: test
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
        metrics:
          - type: accuracy
            value: 45.985
          - type: f1
            value: 39.52034839578244
      - task:
          type: Retrieval
        dataset:
          type: fever
          name: MTEB FEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 39.141999999999996
          - type: map_at_10
            value: 50.255
          - type: map_at_100
            value: 50.938
          - type: map_at_1000
            value: 50.975
          - type: map_at_3
            value: 47.4
          - type: map_at_5
            value: 49.172
          - type: mrr_at_1
            value: 41.794
          - type: mrr_at_10
            value: 53.198
          - type: mrr_at_100
            value: 53.82900000000001
          - type: mrr_at_1000
            value: 53.857
          - type: mrr_at_3
            value: 50.32
          - type: mrr_at_5
            value: 52.105999999999995
          - type: ndcg_at_1
            value: 41.794
          - type: ndcg_at_10
            value: 56.411
          - type: ndcg_at_100
            value: 59.663
          - type: ndcg_at_1000
            value: 60.590999999999994
          - type: ndcg_at_3
            value: 50.73
          - type: ndcg_at_5
            value: 53.823
          - type: precision_at_1
            value: 41.794
          - type: precision_at_10
            value: 7.9159999999999995
          - type: precision_at_100
            value: 0.968
          - type: precision_at_1000
            value: 0.106
          - type: precision_at_3
            value: 20.627000000000002
          - type: precision_at_5
            value: 14.038
          - type: recall_at_1
            value: 39.141999999999996
          - type: recall_at_10
            value: 72.695
          - type: recall_at_100
            value: 87.44800000000001
          - type: recall_at_1000
            value: 94.313
          - type: recall_at_3
            value: 57.415000000000006
          - type: recall_at_5
            value: 64.851
      - task:
          type: Retrieval
        dataset:
          type: fiqa
          name: MTEB FiQA2018
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 18.715
          - type: map_at_10
            value: 30.253999999999998
          - type: map_at_100
            value: 32.123000000000005
          - type: map_at_1000
            value: 32.303
          - type: map_at_3
            value: 26.203
          - type: map_at_5
            value: 28.585
          - type: mrr_at_1
            value: 36.42
          - type: mrr_at_10
            value: 45.456
          - type: mrr_at_100
            value: 46.314
          - type: mrr_at_1000
            value: 46.356
          - type: mrr_at_3
            value: 42.798
          - type: mrr_at_5
            value: 44.365
          - type: ndcg_at_1
            value: 36.42
          - type: ndcg_at_10
            value: 37.747
          - type: ndcg_at_100
            value: 44.714999999999996
          - type: ndcg_at_1000
            value: 47.866
          - type: ndcg_at_3
            value: 34.166999999999994
          - type: ndcg_at_5
            value: 35.54
          - type: precision_at_1
            value: 36.42
          - type: precision_at_10
            value: 10.602
          - type: precision_at_100
            value: 1.773
          - type: precision_at_1000
            value: 0.234
          - type: precision_at_3
            value: 22.84
          - type: precision_at_5
            value: 17.315
          - type: recall_at_1
            value: 18.715
          - type: recall_at_10
            value: 44.199
          - type: recall_at_100
            value: 70.097
          - type: recall_at_1000
            value: 89.13600000000001
          - type: recall_at_3
            value: 30.543
          - type: recall_at_5
            value: 36.705
      - task:
          type: Retrieval
        dataset:
          type: hotpotqa
          name: MTEB HotpotQA
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 30.608
          - type: map_at_10
            value: 45.829
          - type: map_at_100
            value: 46.786
          - type: map_at_1000
            value: 46.869
          - type: map_at_3
            value: 42.834
          - type: map_at_5
            value: 44.566
          - type: mrr_at_1
            value: 61.214999999999996
          - type: mrr_at_10
            value: 69.072
          - type: mrr_at_100
            value: 69.492
          - type: mrr_at_1000
            value: 69.512
          - type: mrr_at_3
            value: 67.553
          - type: mrr_at_5
            value: 68.446
          - type: ndcg_at_1
            value: 61.214999999999996
          - type: ndcg_at_10
            value: 54.66
          - type: ndcg_at_100
            value: 58.342000000000006
          - type: ndcg_at_1000
            value: 60.101000000000006
          - type: ndcg_at_3
            value: 49.932
          - type: ndcg_at_5
            value: 52.342999999999996
          - type: precision_at_1
            value: 61.214999999999996
          - type: precision_at_10
            value: 11.65
          - type: precision_at_100
            value: 1.4529999999999998
          - type: precision_at_1000
            value: 0.169
          - type: precision_at_3
            value: 31.78
          - type: precision_at_5
            value: 20.979999999999997
          - type: recall_at_1
            value: 30.608
          - type: recall_at_10
            value: 58.251
          - type: recall_at_100
            value: 72.667
          - type: recall_at_1000
            value: 84.396
          - type: recall_at_3
            value: 47.67
          - type: recall_at_5
            value: 52.451
      - task:
          type: Classification
        dataset:
          type: mteb/imdb
          name: MTEB ImdbClassification
          config: default
          split: test
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
        metrics:
          - type: accuracy
            value: 90.21999999999998
          - type: ap
            value: 85.88889163834975
          - type: f1
            value: 90.20542534971861
      - task:
          type: Retrieval
        dataset:
          type: msmarco
          name: MTEB MSMARCO
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 19.785
          - type: map_at_10
            value: 31.596000000000004
          - type: map_at_100
            value: 32.849000000000004
          - type: map_at_1000
            value: 32.903999999999996
          - type: map_at_3
            value: 27.772000000000002
          - type: map_at_5
            value: 29.952
          - type: mrr_at_1
            value: 20.344
          - type: mrr_at_10
            value: 32.146
          - type: mrr_at_100
            value: 33.349000000000004
          - type: mrr_at_1000
            value: 33.396
          - type: mrr_at_3
            value: 28.403
          - type: mrr_at_5
            value: 30.542
          - type: ndcg_at_1
            value: 20.358
          - type: ndcg_at_10
            value: 38.288
          - type: ndcg_at_100
            value: 44.383
          - type: ndcg_at_1000
            value: 45.714
          - type: ndcg_at_3
            value: 30.525999999999996
          - type: ndcg_at_5
            value: 34.393
          - type: precision_at_1
            value: 20.358
          - type: precision_at_10
            value: 6.16
          - type: precision_at_100
            value: 0.9209999999999999
          - type: precision_at_1000
            value: 0.104
          - type: precision_at_3
            value: 13.08
          - type: precision_at_5
            value: 9.799
          - type: recall_at_1
            value: 19.785
          - type: recall_at_10
            value: 58.916000000000004
          - type: recall_at_100
            value: 87.24
          - type: recall_at_1000
            value: 97.37599999999999
          - type: recall_at_3
            value: 37.872
          - type: recall_at_5
            value: 47.116
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (en)
          config: en
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 88.63429092567262
          - type: f1
            value: 88.58612904162257
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (en)
          config: en
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 58.080255357957135
          - type: f1
            value: 39.561402859935
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (en)
          config: en
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 65.03026227303296
          - type: f1
            value: 61.10334739098155
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (en)
          config: en
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 71.05245460659046
          - type: f1
            value: 69.96280851244295
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-p2p
          name: MTEB MedrxivClusteringP2P
          config: default
          split: test
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
        metrics:
          - type: v_measure
            value: 33.9762359299763
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-s2s
          name: MTEB MedrxivClusteringS2S
          config: default
          split: test
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
        metrics:
          - type: v_measure
            value: 31.670044418802444
      - task:
          type: Reranking
        dataset:
          type: mteb/mind_small
          name: MTEB MindSmallReranking
          config: default
          split: test
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
        metrics:
          - type: map
            value: 29.32330726926572
          - type: mrr
            value: 30.16727607430052
      - task:
          type: Retrieval
        dataset:
          type: nfcorpus
          name: MTEB NFCorpus
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 4.552
          - type: map_at_10
            value: 10.692
          - type: map_at_100
            value: 13.835
          - type: map_at_1000
            value: 15.305
          - type: map_at_3
            value: 7.5009999999999994
          - type: map_at_5
            value: 8.988
          - type: mrr_at_1
            value: 39.318999999999996
          - type: mrr_at_10
            value: 48.809000000000005
          - type: mrr_at_100
            value: 49.382
          - type: mrr_at_1000
            value: 49.442
          - type: mrr_at_3
            value: 46.078
          - type: mrr_at_5
            value: 48.091
          - type: ndcg_at_1
            value: 37.152
          - type: ndcg_at_10
            value: 30.159000000000002
          - type: ndcg_at_100
            value: 28.371000000000002
          - type: ndcg_at_1000
            value: 37.632
          - type: ndcg_at_3
            value: 34.662
          - type: ndcg_at_5
            value: 32.814
          - type: precision_at_1
            value: 38.7
          - type: precision_at_10
            value: 23.034
          - type: precision_at_100
            value: 7.588
          - type: precision_at_1000
            value: 2.0709999999999997
          - type: precision_at_3
            value: 33.024
          - type: precision_at_5
            value: 29.164
          - type: recall_at_1
            value: 4.552
          - type: recall_at_10
            value: 14.827000000000002
          - type: recall_at_100
            value: 29.256
          - type: recall_at_1000
            value: 61.739
          - type: recall_at_3
            value: 8.38
          - type: recall_at_5
            value: 11.123
      - task:
          type: Retrieval
        dataset:
          type: nq
          name: MTEB NQ
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 25.424999999999997
          - type: map_at_10
            value: 39.972
          - type: map_at_100
            value: 41.163
          - type: map_at_1000
            value: 41.202
          - type: map_at_3
            value: 35.546
          - type: map_at_5
            value: 38.146
          - type: mrr_at_1
            value: 28.794999999999998
          - type: mrr_at_10
            value: 42.315999999999995
          - type: mrr_at_100
            value: 43.253
          - type: mrr_at_1000
            value: 43.282
          - type: mrr_at_3
            value: 38.649
          - type: mrr_at_5
            value: 40.858
          - type: ndcg_at_1
            value: 28.766000000000002
          - type: ndcg_at_10
            value: 47.614000000000004
          - type: ndcg_at_100
            value: 52.676
          - type: ndcg_at_1000
            value: 53.574
          - type: ndcg_at_3
            value: 39.292
          - type: ndcg_at_5
            value: 43.633
          - type: precision_at_1
            value: 28.766000000000002
          - type: precision_at_10
            value: 8.201
          - type: precision_at_100
            value: 1.099
          - type: precision_at_1000
            value: 0.11800000000000001
          - type: precision_at_3
            value: 18.201999999999998
          - type: precision_at_5
            value: 13.447000000000001
          - type: recall_at_1
            value: 25.424999999999997
          - type: recall_at_10
            value: 68.586
          - type: recall_at_100
            value: 90.556
          - type: recall_at_1000
            value: 97.197
          - type: recall_at_3
            value: 47.033
          - type: recall_at_5
            value: 57.044
      - task:
          type: Retrieval
        dataset:
          type: quora
          name: MTEB QuoraRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 70.054
          - type: map_at_10
            value: 83.991
          - type: map_at_100
            value: 84.63000000000001
          - type: map_at_1000
            value: 84.648
          - type: map_at_3
            value: 80.982
          - type: map_at_5
            value: 82.857
          - type: mrr_at_1
            value: 80.76
          - type: mrr_at_10
            value: 87.079
          - type: mrr_at_100
            value: 87.185
          - type: mrr_at_1000
            value: 87.18599999999999
          - type: mrr_at_3
            value: 86.03
          - type: mrr_at_5
            value: 86.771
          - type: ndcg_at_1
            value: 80.75
          - type: ndcg_at_10
            value: 87.85300000000001
          - type: ndcg_at_100
            value: 89.105
          - type: ndcg_at_1000
            value: 89.213
          - type: ndcg_at_3
            value: 84.87400000000001
          - type: ndcg_at_5
            value: 86.51299999999999
          - type: precision_at_1
            value: 80.75
          - type: precision_at_10
            value: 13.352
          - type: precision_at_100
            value: 1.528
          - type: precision_at_1000
            value: 0.157
          - type: precision_at_3
            value: 37.113
          - type: precision_at_5
            value: 24.424
          - type: recall_at_1
            value: 70.054
          - type: recall_at_10
            value: 95.209
          - type: recall_at_100
            value: 99.497
          - type: recall_at_1000
            value: 99.973
          - type: recall_at_3
            value: 86.654
          - type: recall_at_5
            value: 91.313
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering
          name: MTEB RedditClustering
          config: default
          split: test
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
        metrics:
          - type: v_measure
            value: 42.71909082787674
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering-p2p
          name: MTEB RedditClusteringP2P
          config: default
          split: test
          revision: 282350215ef01743dc01b456c7f5241fa8937f16
        metrics:
          - type: v_measure
            value: 56.92567540870805
      - task:
          type: Retrieval
        dataset:
          type: scidocs
          name: MTEB SCIDOCS
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 2.225
          - type: map_at_10
            value: 5.785
          - type: map_at_100
            value: 7.6240000000000006
          - type: map_at_1000
            value: 8.094999999999999
          - type: map_at_3
            value: 3.882
          - type: map_at_5
            value: 4.715
          - type: mrr_at_1
            value: 11
          - type: mrr_at_10
            value: 18.049
          - type: mrr_at_100
            value: 19.475
          - type: mrr_at_1000
            value: 19.599
          - type: mrr_at_3
            value: 15.082999999999998
          - type: mrr_at_5
            value: 16.583000000000002
          - type: ndcg_at_1
            value: 11
          - type: ndcg_at_10
            value: 10.59
          - type: ndcg_at_100
            value: 18.68
          - type: ndcg_at_1000
            value: 27.327
          - type: ndcg_at_3
            value: 8.932
          - type: ndcg_at_5
            value: 8.126
          - type: precision_at_1
            value: 11
          - type: precision_at_10
            value: 5.89
          - type: precision_at_100
            value: 1.778
          - type: precision_at_1000
            value: 0.385
          - type: precision_at_3
            value: 8.333
          - type: precision_at_5
            value: 7.3
          - type: recall_at_1
            value: 2.225
          - type: recall_at_10
            value: 11.948
          - type: recall_at_100
            value: 36.097
          - type: recall_at_1000
            value: 78.145
          - type: recall_at_3
            value: 5.078
          - type: recall_at_5
            value: 7.4079999999999995
      - task:
          type: STS
        dataset:
          type: mteb/sickr-sts
          name: MTEB SICK-R
          config: default
          split: test
          revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
        metrics:
          - type: cos_sim_pearson
            value: 83.87898494199837
          - type: cos_sim_spearman
            value: 79.3815141247343
          - type: euclidean_pearson
            value: 80.984944764735
          - type: euclidean_spearman
            value: 79.37984688714191
          - type: manhattan_pearson
            value: 80.96139326762788
          - type: manhattan_spearman
            value: 79.34882764221987
      - task:
          type: STS
        dataset:
          type: mteb/sts12-sts
          name: MTEB STS12
          config: default
          split: test
          revision: a0d554a64d88156834ff5ae9920b964011b16384
        metrics:
          - type: cos_sim_pearson
            value: 82.94123934276303
          - type: cos_sim_spearman
            value: 73.64821774752144
          - type: euclidean_pearson
            value: 79.09149672589201
          - type: euclidean_spearman
            value: 73.64174833442063
          - type: manhattan_pearson
            value: 79.05135129686983
          - type: manhattan_spearman
            value: 73.57858840270084
      - task:
          type: STS
        dataset:
          type: mteb/sts13-sts
          name: MTEB STS13
          config: default
          split: test
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
        metrics:
          - type: cos_sim_pearson
            value: 71.37047316191514
          - type: cos_sim_spearman
            value: 75.56797051373606
          - type: euclidean_pearson
            value: 74.59038333631109
          - type: euclidean_spearman
            value: 75.55966023907652
          - type: manhattan_pearson
            value: 74.56600039917967
          - type: manhattan_spearman
            value: 75.52139454559969
      - task:
          type: STS
        dataset:
          type: mteb/sts14-sts
          name: MTEB STS14
          config: default
          split: test
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
        metrics:
          - type: cos_sim_pearson
            value: 71.75410054949431
          - type: cos_sim_spearman
            value: 72.09826786050286
          - type: euclidean_pearson
            value: 72.30015801748517
          - type: euclidean_spearman
            value: 72.09347126863909
          - type: manhattan_pearson
            value: 72.2692656804079
          - type: manhattan_spearman
            value: 72.07403601010577
      - task:
          type: STS
        dataset:
          type: mteb/sts15-sts
          name: MTEB STS15
          config: default
          split: test
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
        metrics:
          - type: cos_sim_pearson
            value: 83.09663528706463
          - type: cos_sim_spearman
            value: 85.6296813586495
          - type: euclidean_pearson
            value: 84.14347920777777
          - type: euclidean_spearman
            value: 85.62948425849926
          - type: manhattan_pearson
            value: 84.08840896634038
          - type: manhattan_spearman
            value: 85.56264430897471
      - task:
          type: STS
        dataset:
          type: mteb/sts16-sts
          name: MTEB STS16
          config: default
          split: test
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
        metrics:
          - type: cos_sim_pearson
            value: 78.55984417539631
          - type: cos_sim_spearman
            value: 82.06700938579174
          - type: euclidean_pearson
            value: 80.92277218507344
          - type: euclidean_spearman
            value: 82.06297899287695
          - type: manhattan_pearson
            value: 80.89292734584946
          - type: manhattan_spearman
            value: 82.01121177547141
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-en)
          config: en-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 88.70738419575085
          - type: cos_sim_spearman
            value: 88.99910283221313
          - type: euclidean_pearson
            value: 88.91458218447116
          - type: euclidean_spearman
            value: 88.97188755639708
          - type: manhattan_pearson
            value: 88.93397958768632
          - type: manhattan_spearman
            value: 89.0514960821245
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (en)
          config: en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 65.30101408630514
          - type: cos_sim_spearman
            value: 66.15672143838582
          - type: euclidean_pearson
            value: 66.61257552376895
          - type: euclidean_spearman
            value: 66.00319920690566
          - type: manhattan_pearson
            value: 66.81435622246758
          - type: manhattan_spearman
            value: 66.35221377631379
      - task:
          type: STS
        dataset:
          type: mteb/stsbenchmark-sts
          name: MTEB STSBenchmark
          config: default
          split: test
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
        metrics:
          - type: cos_sim_pearson
            value: 81.94191078286725
          - type: cos_sim_spearman
            value: 83.69085688689903
          - type: euclidean_pearson
            value: 83.28942607749994
          - type: euclidean_spearman
            value: 83.69370814043747
          - type: manhattan_pearson
            value: 83.3553242227074
          - type: manhattan_spearman
            value: 83.74306572840383
      - task:
          type: Reranking
        dataset:
          type: mteb/scidocs-reranking
          name: MTEB SciDocsRR
          config: default
          split: test
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
        metrics:
          - type: map
            value: 88.02503921524934
          - type: mrr
            value: 96.47891777793738
      - task:
          type: Retrieval
        dataset:
          type: scifact
          name: MTEB SciFact
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 51.24999999999999
          - type: map_at_10
            value: 61.472
          - type: map_at_100
            value: 62.132
          - type: map_at_1000
            value: 62.161
          - type: map_at_3
            value: 58.18299999999999
          - type: map_at_5
            value: 60.246
          - type: mrr_at_1
            value: 54
          - type: mrr_at_10
            value: 62.395
          - type: mrr_at_100
            value: 62.936
          - type: mrr_at_1000
            value: 62.965
          - type: mrr_at_3
            value: 59.833000000000006
          - type: mrr_at_5
            value: 61.5
          - type: ndcg_at_1
            value: 54
          - type: ndcg_at_10
            value: 66.235
          - type: ndcg_at_100
            value: 69.279
          - type: ndcg_at_1000
            value: 70.044
          - type: ndcg_at_3
            value: 60.679
          - type: ndcg_at_5
            value: 63.80200000000001
          - type: precision_at_1
            value: 54
          - type: precision_at_10
            value: 9.167
          - type: precision_at_100
            value: 1.0699999999999998
          - type: precision_at_1000
            value: 0.11299999999999999
          - type: precision_at_3
            value: 24.111
          - type: precision_at_5
            value: 16.333000000000002
          - type: recall_at_1
            value: 51.24999999999999
          - type: recall_at_10
            value: 79.833
          - type: recall_at_100
            value: 94
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 65.267
          - type: recall_at_5
            value: 72.956
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
          config: default
          split: test
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
        metrics:
          - type: cos_sim_accuracy
            value: 99.62673267326733
          - type: cos_sim_ap
            value: 87.07482534376774
          - type: cos_sim_f1
            value: 80.63687724704674
          - type: cos_sim_precision
            value: 82.89334741288279
          - type: cos_sim_recall
            value: 78.5
          - type: dot_accuracy
            value: 99.63564356435643
          - type: dot_ap
            value: 86.98432756163903
          - type: dot_f1
            value: 80.91286307053943
          - type: dot_precision
            value: 84.05172413793103
          - type: dot_recall
            value: 78
          - type: euclidean_accuracy
            value: 99.62673267326733
          - type: euclidean_ap
            value: 87.0756316041764
          - type: euclidean_f1
            value: 80.53553038105046
          - type: euclidean_precision
            value: 83.01486199575372
          - type: euclidean_recall
            value: 78.2
          - type: manhattan_accuracy
            value: 99.62574257425743
          - type: manhattan_ap
            value: 87.05953308523233
          - type: manhattan_f1
            value: 80.50632911392405
          - type: manhattan_precision
            value: 81.53846153846153
          - type: manhattan_recall
            value: 79.5
          - type: max_accuracy
            value: 99.63564356435643
          - type: max_ap
            value: 87.0756316041764
          - type: max_f1
            value: 80.91286307053943
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering
          name: MTEB StackExchangeClustering
          config: default
          split: test
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
        metrics:
          - type: v_measure
            value: 53.59692640735744
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering-p2p
          name: MTEB StackExchangeClusteringP2P
          config: default
          split: test
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
        metrics:
          - type: v_measure
            value: 32.86771187657918
      - task:
          type: Reranking
        dataset:
          type: mteb/stackoverflowdupquestions-reranking
          name: MTEB StackOverflowDupQuestions
          config: default
          split: test
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
        metrics:
          - type: map
            value: 45.705711066037644
          - type: mrr
            value: 46.25163133435192
      - task:
          type: Summarization
        dataset:
          type: mteb/summeval
          name: MTEB SummEval
          config: default
          split: test
          revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
        metrics:
          - type: cos_sim_pearson
            value: 30.066382997227624
          - type: cos_sim_spearman
            value: 31.00934876843689
          - type: dot_pearson
            value: 30.419206995727873
          - type: dot_spearman
            value: 31.046571150093747
      - task:
          type: Retrieval
        dataset:
          type: trec-covid
          name: MTEB TRECCOVID
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.173
          - type: map_at_10
            value: 1.154
          - type: map_at_100
            value: 5.8180000000000005
          - type: map_at_1000
            value: 14.892
          - type: map_at_3
            value: 0.415
          - type: map_at_5
            value: 0.641
          - type: mrr_at_1
            value: 68
          - type: mrr_at_10
            value: 76.869
          - type: mrr_at_100
            value: 77.264
          - type: mrr_at_1000
            value: 77.264
          - type: mrr_at_3
            value: 75.333
          - type: mrr_at_5
            value: 76.333
          - type: ndcg_at_1
            value: 62
          - type: ndcg_at_10
            value: 50.81
          - type: ndcg_at_100
            value: 37.659
          - type: ndcg_at_1000
            value: 37.444
          - type: ndcg_at_3
            value: 55.11200000000001
          - type: ndcg_at_5
            value: 51.858000000000004
          - type: precision_at_1
            value: 68
          - type: precision_at_10
            value: 54.800000000000004
          - type: precision_at_100
            value: 38.36
          - type: precision_at_1000
            value: 16.88
          - type: precision_at_3
            value: 57.99999999999999
          - type: precision_at_5
            value: 54.800000000000004
          - type: recall_at_1
            value: 0.173
          - type: recall_at_10
            value: 1.435
          - type: recall_at_100
            value: 9.259
          - type: recall_at_1000
            value: 36.033
          - type: recall_at_3
            value: 0.447
          - type: recall_at_5
            value: 0.74
      - task:
          type: Retrieval
        dataset:
          type: webis-touche2020
          name: MTEB Touche2020
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 1.228
          - type: map_at_10
            value: 4.633
          - type: map_at_100
            value: 9.171
          - type: map_at_1000
            value: 10.58
          - type: map_at_3
            value: 2.413
          - type: map_at_5
            value: 3.3640000000000003
          - type: mrr_at_1
            value: 16.326999999999998
          - type: mrr_at_10
            value: 27.071
          - type: mrr_at_100
            value: 28.454
          - type: mrr_at_1000
            value: 28.475
          - type: mrr_at_3
            value: 19.048000000000002
          - type: mrr_at_5
            value: 24.354
          - type: ndcg_at_1
            value: 14.285999999999998
          - type: ndcg_at_10
            value: 13.312
          - type: ndcg_at_100
            value: 25.587
          - type: ndcg_at_1000
            value: 37.879000000000005
          - type: ndcg_at_3
            value: 11.591
          - type: ndcg_at_5
            value: 12.536
          - type: precision_at_1
            value: 16.326999999999998
          - type: precision_at_10
            value: 13.264999999999999
          - type: precision_at_100
            value: 6.061
          - type: precision_at_1000
            value: 1.4040000000000001
          - type: precision_at_3
            value: 12.245000000000001
          - type: precision_at_5
            value: 13.877999999999998
          - type: recall_at_1
            value: 1.228
          - type: recall_at_10
            value: 9.759
          - type: recall_at_100
            value: 38.809
          - type: recall_at_1000
            value: 76.229
          - type: recall_at_3
            value: 2.738
          - type: recall_at_5
            value: 5.510000000000001
      - task:
          type: Classification
        dataset:
          type: mteb/toxic_conversations_50k
          name: MTEB ToxicConversationsClassification
          config: default
          split: test
          revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
        metrics:
          - type: accuracy
            value: 69.33179999999999
          - type: ap
            value: 14.379598043710034
          - type: f1
            value: 53.89665138084001
      - task:
          type: Classification
        dataset:
          type: mteb/tweet_sentiment_extraction
          name: MTEB TweetSentimentExtractionClassification
          config: default
          split: test
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
        metrics:
          - type: accuracy
            value: 58.245614035087726
          - type: f1
            value: 58.3152945231724
      - task:
          type: Clustering
        dataset:
          type: mteb/twentynewsgroups-clustering
          name: MTEB TwentyNewsgroupsClustering
          config: default
          split: test
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
        metrics:
          - type: v_measure
            value: 38.38161204174159
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 82.60118018716099
          - type: cos_sim_ap
            value: 62.5064927795416
          - type: cos_sim_f1
            value: 59.50177935943061
          - type: cos_sim_precision
            value: 54.05172413793103
          - type: cos_sim_recall
            value: 66.17414248021109
          - type: dot_accuracy
            value: 82.52369315133814
          - type: dot_ap
            value: 62.36545569178682
          - type: dot_f1
            value: 59.5539204414808
          - type: dot_precision
            value: 52.77098614506927
          - type: dot_recall
            value: 68.33773087071239
          - type: euclidean_accuracy
            value: 82.62502235202956
          - type: euclidean_ap
            value: 62.51708062651598
          - type: euclidean_f1
            value: 59.48887837198297
          - type: euclidean_precision
            value: 53.925353925353924
          - type: euclidean_recall
            value: 66.33245382585751
          - type: manhattan_accuracy
            value: 82.57733802229242
          - type: manhattan_ap
            value: 62.4034159268756
          - type: manhattan_f1
            value: 59.42896615242921
          - type: manhattan_precision
            value: 52.716503267973856
          - type: manhattan_recall
            value: 68.10026385224275
          - type: max_accuracy
            value: 82.62502235202956
          - type: max_ap
            value: 62.51708062651598
          - type: max_f1
            value: 59.5539204414808
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 86.74079248651377
          - type: cos_sim_ap
            value: 81.11128912769627
          - type: cos_sim_f1
            value: 73.39903296054331
          - type: cos_sim_precision
            value: 70.49273307337823
          - type: cos_sim_recall
            value: 76.55528179858331
          - type: dot_accuracy
            value: 86.71362595567975
          - type: dot_ap
            value: 81.07587927324371
          - type: dot_f1
            value: 73.36112443280334
          - type: dot_precision
            value: 70.42283447836249
          - type: dot_recall
            value: 76.55528179858331
          - type: euclidean_accuracy
            value: 86.73109015407304
          - type: euclidean_ap
            value: 81.11249921439843
          - type: euclidean_f1
            value: 73.39903296054331
          - type: euclidean_precision
            value: 70.49273307337823
          - type: euclidean_recall
            value: 76.55528179858331
          - type: manhattan_accuracy
            value: 86.7252687546086
          - type: manhattan_ap
            value: 81.05990290681223
          - type: manhattan_f1
            value: 73.29173525245952
          - type: manhattan_precision
            value: 72.88161400837457
          - type: manhattan_recall
            value: 73.70649830612874
          - type: max_accuracy
            value: 86.74079248651377
          - type: max_ap
            value: 81.11249921439843
          - type: max_f1
            value: 73.39903296054331