metadata
license: apache-2.0
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: mistralai/Mixtral-8x7B-Instruct-v0.1
model-index:
- name: mixtral-lora
results: []
See axolotl config
axolotl version: 0.4.0
base_model: mistralai/Mixtral-8x7B-Instruct-v0.1
model_type: AutoModelForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: true
strict: false
chat_template: inst
datasets:
datasets:
- path: ./data/raw_format/tool_used_training.jsonl
type: sharegpt
- path: ./data/raw_format/tool_not_used_training.jsonl
type: sharegpt
- path: ./data/raw_format/no_tools_training.jsonl
type: sharegpt
dataset_prepared_path: last_run_prepared
val_set_size: 0.01
output_dir: ../../text-generation-webui/loras/mixtral-instruct-raw-data-v3-inst
adapter: lora
lora_model_dir:
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
lora_r: 16
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
hub_model_id: liuylhf/mixtral-lora
# lora_target_modules:
# - gate_proj
# - down_proj
# - up_proj
# - q_proj
# - v_proj
# - k_proj
# - o_proj
wandb_project: function-call
wandb_name: mixtral-instruct-raw-data-v3
wandb_log_model: end
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.001
adam_beta2: 0.95
adam_epsilon: 0.00001
max_grad_norm: 1.0
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
# loss_watchdog_threshold: 5.0
# loss_watchdog_patience: 3
warmup_steps: 10
# evals_per_epoch: 20
eval_steps: 0.1
save_steps: 0.1
eval_table_size:
eval_max_new_tokens: 256
# saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 1.0
fsdp:
fsdp_config:
mixtral-lora
This model is a fine-tuned version of mistralai/Mixtral-8x7B-Instruct-v0.1 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1746
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.397 | 0.0 | 1 | 3.2822 |
0.1294 | 0.2 | 67 | 0.2029 |
0.1664 | 0.4 | 134 | 0.1918 |
0.1742 | 0.6 | 201 | 0.1853 |
0.163 | 0.8 | 268 | 0.1827 |
0.1537 | 1.0 | 335 | 0.1798 |
0.1056 | 1.19 | 402 | 0.1781 |
0.1688 | 1.39 | 469 | 0.1765 |
0.1187 | 1.59 | 536 | 0.1752 |
0.1823 | 1.79 | 603 | 0.1748 |
0.1022 | 1.99 | 670 | 0.1746 |
Framework versions
- PEFT 0.8.2
- Transformers 4.39.0.dev0
- Pytorch 2.2.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.0