Built with Axolotl

See axolotl config

axolotl version: 0.4.0

adam_beta2: 0.95
adam_epsilon: 1.0e-05
adapter: lora
base_model: mistralai/Mistral-7B-Instruct-v0.2
bf16: auto
chat_template: inst
dataset_prepared_path: last_run_prepared
datasets:
- conversation: mistral
  path: 4e9501d816a24795b7d619faea6fe0b7/./data/raw_format/tool_used_training_small.jsonl
  type: sharegpt
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 256
eval_steps: 0.2
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: liuylhf/mistral-lora
is_mistral_derived_model: true
learning_rate: 0.001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
micro_batch_size: 2
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: paged_adamw_8bit
output_dir: ../../text-generation-webui/loras/mistral-instruct-raw-format-v2-more-positive-inst
pad_to_sequence_len: true
resume_from_checkpoint: null
sample_packing: true
save_steps: 0.2
sequence_len: 4096
strict: false
tf32: false
tokenizer_type: LlamaTokenizer
train_on_inputs: false
val_set_size: 0.1
wandb_log_model: end
wandb_name: mixtral-instruct-qlora-v1
wandb_project: function-call
warmup_steps: 10
weight_decay: 1.0
xformers_attention: null

mistral-lora

This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0298

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • total_eval_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss
2.2964 0.02 1 2.1559
0.0487 0.41 21 0.0479
0.0367 0.81 42 0.0387
0.0331 1.19 63 0.0333
0.0209 1.6 84 0.0298

Framework versions

  • PEFT 0.8.2
  • Transformers 4.39.0.dev0
  • Pytorch 2.2.0+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.0
Downloads last month
88
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for liuylhf/mistral-lora

Adapter
(900)
this model