File size: 11,189 Bytes
f35cc9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": []
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "cells": [
    {
      "cell_type": "markdown",
      "source": [
        "#Install dependencies"
      ],
      "metadata": {
        "id": "39AMoCOa1ckc"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "!pip install ai-edge-litert-nightly"
      ],
      "metadata": {
        "id": "43tAeO0AZ7zp"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "from ai_edge_litert import interpreter as interpreter_lib\n",
        "from transformers import AutoTokenizer\n",
        "import numpy as np\n",
        "from collections.abc import Sequence\n",
        "import sys"
      ],
      "metadata": {
        "id": "i6PMkMVBPr1p"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "# Download model files"
      ],
      "metadata": {
        "id": "K5okZCTgYpUd"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "from huggingface_hub import hf_hub_download\n",
        "\n",
        "model_path = hf_hub_download(repo_id=\"litert-community/DeepSeek-R1-Distill-Qwen-1.5B\", filename=\"deepseek_q8_seq128_ekv1280.tflite\")"
      ],
      "metadata": {
        "id": "3t47HAG2tvc3"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "# Create LiteRT interpreter and tokenizer"
      ],
      "metadata": {
        "id": "n5Xa4s6XhWqk"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "interpreter = interpreter_lib.InterpreterWithCustomOps(\n",
        "    custom_op_registerers=[\"pywrap_genai_ops.GenAIOpsRegisterer\"],\n",
        "    model_path=model_path,\n",
        "    num_threads=2,\n",
        "    experimental_default_delegate_latest_features=True)\n",
        "tokenizer = AutoTokenizer.from_pretrained(\"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B\")"
      ],
      "metadata": {
        "id": "Rvdn3EIZhaQn"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "# Create pipeline with LiteRT models"
      ],
      "metadata": {
        "id": "AM6rDABTXt2F"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "\n",
        "class LiteRTLlmPipeline:\n",
        "\n",
        "  def __init__(self, interpreter, tokenizer):\n",
        "    \"\"\"Initializes the pipeline.\"\"\"\n",
        "    self._interpreter = interpreter\n",
        "    self._tokenizer = tokenizer\n",
        "\n",
        "    self._prefill_runner = None\n",
        "    self._decode_runner = self._interpreter.get_signature_runner(\"decode\")\n",
        "\n",
        "\n",
        "  def _init_prefill_runner(self, num_input_tokens: int):\n",
        "    \"\"\"Initializes all the variables related to the prefill runner.\n",
        "\n",
        "    This method initializes the following variables:\n",
        "      - self._prefill_runner: The prefill runner based on the input size.\n",
        "      - self._max_seq_len: The maximum sequence length supported by the model.\n",
        "      - self._max_kv_cache_seq_len: The maximum sequence length supported by the\n",
        "        KV cache.\n",
        "      - self._num_layers: The number of layers in the model.\n",
        "\n",
        "    Args:\n",
        "      num_input_tokens: The number of input tokens.\n",
        "    \"\"\"\n",
        "\n",
        "    self._prefill_runner = self._get_prefill_runner(num_input_tokens)\n",
        "    # input_token_shape has shape (batch, max_seq_len)\n",
        "    input_token_shape = self._prefill_runner.get_input_details()[\"tokens\"][\n",
        "        \"shape\"\n",
        "    ]\n",
        "    if len(input_token_shape) == 1:\n",
        "      self._max_seq_len = input_token_shape[0]\n",
        "    else:\n",
        "      self._max_seq_len = input_token_shape[1]\n",
        "\n",
        "    # kv cache input has shape [batch=1, seq_len, num_heads, dim].\n",
        "    kv_cache_shape = self._prefill_runner.get_input_details()[\"kv_cache_k_0\"][\n",
        "        \"shape\"\n",
        "    ]\n",
        "    self._max_kv_cache_seq_len = kv_cache_shape[1]\n",
        "\n",
        "    # The two arguments excluded are `tokens` and `input_pos`. Dividing by 2\n",
        "    # because each layer has key and value caches.\n",
        "    self._num_layers = (\n",
        "        len(self._prefill_runner.get_input_details().keys()) - 2\n",
        "    ) // 2\n",
        "\n",
        "\n",
        "  def _init_kv_cache(self) -> dict[str, np.ndarray]:\n",
        "    if self._prefill_runner is None:\n",
        "      raise ValueError(\"Prefill runner is not initialized.\")\n",
        "    kv_cache = {}\n",
        "    for i in range(self._num_layers):\n",
        "      kv_cache[f\"kv_cache_k_{i}\"] = np.zeros(\n",
        "          self._prefill_runner.get_input_details()[f\"kv_cache_k_{i}\"][\"shape\"],\n",
        "          dtype=np.float32,\n",
        "      )\n",
        "      kv_cache[f\"kv_cache_v_{i}\"] = np.zeros(\n",
        "          self._prefill_runner.get_input_details()[f\"kv_cache_v_{i}\"][\"shape\"],\n",
        "          dtype=np.float32,\n",
        "      )\n",
        "    return kv_cache\n",
        "\n",
        "  def _get_prefill_runner(self, num_input_tokens: int) :\n",
        "    \"\"\"Gets the prefill runner with the best suitable input size.\n",
        "\n",
        "    Args:\n",
        "      num_input_tokens: The number of input tokens.\n",
        "\n",
        "    Returns:\n",
        "      The prefill runner with the smallest input size.\n",
        "    \"\"\"\n",
        "    best_signature = None\n",
        "    delta = sys.maxsize\n",
        "    max_prefill_len = -1\n",
        "    for key in self._interpreter.get_signature_list().keys():\n",
        "      if \"prefill\" not in key:\n",
        "        continue\n",
        "      input_pos = self._interpreter.get_signature_runner(key).get_input_details()[\n",
        "          \"input_pos\"\n",
        "      ]\n",
        "      # input_pos[\"shape\"] has shape (max_seq_len, )\n",
        "      seq_size = input_pos[\"shape\"][0]\n",
        "      max_prefill_len = max(max_prefill_len, seq_size)\n",
        "      if num_input_tokens <= seq_size and seq_size - num_input_tokens < delta:\n",
        "        delta = seq_size - num_input_tokens\n",
        "        best_signature = key\n",
        "    if best_signature is None:\n",
        "      raise ValueError(\n",
        "          \"The largest prefill length supported is %d, but we have %d number of input tokens\"\n",
        "          %(max_prefill_len, num_input_tokens)\n",
        "      )\n",
        "    return self._interpreter.get_signature_runner(best_signature)\n",
        "\n",
        "  def _greedy_sampler(self, logits: np.ndarray) -> int:\n",
        "    return int(np.argmax(logits))\n",
        "\n",
        "  def generate(self, prompt: str, max_decode_steps: int | None = None) -> str:\n",
        "    messages=[{ 'role': 'user', 'content': prompt}]\n",
        "    token_ids = self._tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True)\n",
        "    # Initialize the prefill runner with the suitable input size.\n",
        "    self._init_prefill_runner(len(token_ids))\n",
        "\n",
        "    actual_max_decode_steps = self._max_kv_cache_seq_len - len(token_ids)\n",
        "    if max_decode_steps is not None:\n",
        "      actual_max_decode_steps = min(actual_max_decode_steps, max_decode_steps)\n",
        "\n",
        "    input_token_ids = [0] * self._max_seq_len\n",
        "    input_token_ids[:len(token_ids)] = token_ids\n",
        "    model_inputs = self._init_kv_cache()\n",
        "    model_inputs.update({\n",
        "        \"tokens\": np.asarray([input_token_ids], dtype=np.int32),\n",
        "        \"input_pos\": np.arange(self._max_seq_len, dtype=np.int32),\n",
        "    })\n",
        "    decode_text = []\n",
        "    decode_step = 0\n",
        "    print('Running prefill')\n",
        "    for step in range(actual_max_decode_steps+1):\n",
        "      signature_runner = self._prefill_runner if step == 0 else self._decode_runner\n",
        "      model_outputs = signature_runner(**model_inputs)\n",
        "      # At prefill stage, output logits has shape (batch=1, seq_size, vocab_size)\n",
        "      # At decode stage, output logits has shape (batch=1, 1, vocab_size).\n",
        "      selected_logit = len(token_ids)-1 if step == 0 else 0\n",
        "      logits = model_outputs.pop(\"logits\")[0][selected_logit]\n",
        "\n",
        "      if step == 0:\n",
        "        print('Running decode')\n",
        "\n",
        "      # Decode text output.\n",
        "      next_token = self._greedy_sampler(logits)\n",
        "      if next_token == self._tokenizer.eos_token_id:\n",
        "        break\n",
        "      decode_text.append(self._tokenizer.decode(next_token, skip_special_tokens=False))\n",
        "      print(decode_text[-1], end='', flush=True)\n",
        "      # The rest of the outputs is the updated kv cache.\n",
        "      model_inputs = model_outputs\n",
        "      model_inputs.update({\n",
        "          \"tokens\": np.array([[next_token]], dtype=np.int32),\n",
        "          \"input_pos\": np.array([decode_step + len(token_ids)], dtype=np.int32),})\n",
        "      decode_step += 1\n",
        "\n",
        "\n",
        "\n",
        "    print() # print a new line at the end.\n",
        "    return ''.join(decode_text)\n"
      ],
      "metadata": {
        "id": "UBSGrHrM4ANm"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "# Generate text from model"
      ],
      "metadata": {
        "id": "dASKx_JtYXwe"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "# Disclaimer: Model performance demonstrated with the Python API in this notebook is not representative of performance on a local device.\n",
        "pipeline = LiteRTLlmPipeline(interpreter, tokenizer)"
      ],
      "metadata": {
        "id": "AZhlDQWg61AL"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "prompt = \"what is 8 mod 5\"\n",
        "output = pipeline.generate(prompt, max_decode_steps = None)"
      ],
      "metadata": {
        "id": "wT9BIiATkjzL"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [],
      "metadata": {
        "id": "GNzDBxDFEuAJ"
      },
      "execution_count": null,
      "outputs": []
    }
  ]
}