Upload the updated colab file (#4)
Browse files- Upload the updated colab file (063fb27037751c0128e9c48da3bced4a7e689b3e)
Co-authored-by: Xiaoming Hu <[email protected]>
- deepseek_tflite.ipynb +307 -0
deepseek_tflite.ipynb
ADDED
|
@@ -0,0 +1,307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"nbformat": 4,
|
| 3 |
+
"nbformat_minor": 0,
|
| 4 |
+
"metadata": {
|
| 5 |
+
"colab": {
|
| 6 |
+
"provenance": []
|
| 7 |
+
},
|
| 8 |
+
"kernelspec": {
|
| 9 |
+
"name": "python3",
|
| 10 |
+
"display_name": "Python 3"
|
| 11 |
+
},
|
| 12 |
+
"language_info": {
|
| 13 |
+
"name": "python"
|
| 14 |
+
}
|
| 15 |
+
},
|
| 16 |
+
"cells": [
|
| 17 |
+
{
|
| 18 |
+
"cell_type": "markdown",
|
| 19 |
+
"source": [
|
| 20 |
+
"#Install dependencies"
|
| 21 |
+
],
|
| 22 |
+
"metadata": {
|
| 23 |
+
"id": "39AMoCOa1ckc"
|
| 24 |
+
}
|
| 25 |
+
},
|
| 26 |
+
{
|
| 27 |
+
"cell_type": "code",
|
| 28 |
+
"source": [
|
| 29 |
+
"!pip install ai-edge-litert-nightly"
|
| 30 |
+
],
|
| 31 |
+
"metadata": {
|
| 32 |
+
"id": "43tAeO0AZ7zp"
|
| 33 |
+
},
|
| 34 |
+
"execution_count": null,
|
| 35 |
+
"outputs": []
|
| 36 |
+
},
|
| 37 |
+
{
|
| 38 |
+
"cell_type": "code",
|
| 39 |
+
"source": [
|
| 40 |
+
"from ai_edge_litert import interpreter as interpreter_lib\n",
|
| 41 |
+
"from transformers import AutoTokenizer\n",
|
| 42 |
+
"import numpy as np\n",
|
| 43 |
+
"from collections.abc import Sequence\n",
|
| 44 |
+
"import sys"
|
| 45 |
+
],
|
| 46 |
+
"metadata": {
|
| 47 |
+
"id": "i6PMkMVBPr1p"
|
| 48 |
+
},
|
| 49 |
+
"execution_count": null,
|
| 50 |
+
"outputs": []
|
| 51 |
+
},
|
| 52 |
+
{
|
| 53 |
+
"cell_type": "markdown",
|
| 54 |
+
"source": [
|
| 55 |
+
"# Download model files"
|
| 56 |
+
],
|
| 57 |
+
"metadata": {
|
| 58 |
+
"id": "K5okZCTgYpUd"
|
| 59 |
+
}
|
| 60 |
+
},
|
| 61 |
+
{
|
| 62 |
+
"cell_type": "code",
|
| 63 |
+
"source": [
|
| 64 |
+
"from huggingface_hub import hf_hub_download\n",
|
| 65 |
+
"\n",
|
| 66 |
+
"model_path = hf_hub_download(repo_id=\"litert-community/DeepSeek-R1-Distill-Qwen-1.5B\", filename=\"deepseek_q8_seq128_ekv1280.tflite\")"
|
| 67 |
+
],
|
| 68 |
+
"metadata": {
|
| 69 |
+
"id": "3t47HAG2tvc3"
|
| 70 |
+
},
|
| 71 |
+
"execution_count": null,
|
| 72 |
+
"outputs": []
|
| 73 |
+
},
|
| 74 |
+
{
|
| 75 |
+
"cell_type": "markdown",
|
| 76 |
+
"source": [
|
| 77 |
+
"# Create LiteRT interpreter and tokenizer"
|
| 78 |
+
],
|
| 79 |
+
"metadata": {
|
| 80 |
+
"id": "n5Xa4s6XhWqk"
|
| 81 |
+
}
|
| 82 |
+
},
|
| 83 |
+
{
|
| 84 |
+
"cell_type": "code",
|
| 85 |
+
"source": [
|
| 86 |
+
"interpreter = interpreter_lib.InterpreterWithCustomOps(\n",
|
| 87 |
+
" custom_op_registerers=[\"pywrap_genai_ops.GenAIOpsRegisterer\"],\n",
|
| 88 |
+
" model_path=model_path,\n",
|
| 89 |
+
" num_threads=2,\n",
|
| 90 |
+
" experimental_default_delegate_latest_features=True)\n",
|
| 91 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B\")"
|
| 92 |
+
],
|
| 93 |
+
"metadata": {
|
| 94 |
+
"id": "Rvdn3EIZhaQn"
|
| 95 |
+
},
|
| 96 |
+
"execution_count": null,
|
| 97 |
+
"outputs": []
|
| 98 |
+
},
|
| 99 |
+
{
|
| 100 |
+
"cell_type": "markdown",
|
| 101 |
+
"source": [
|
| 102 |
+
"# Create pipeline with LiteRT models"
|
| 103 |
+
],
|
| 104 |
+
"metadata": {
|
| 105 |
+
"id": "AM6rDABTXt2F"
|
| 106 |
+
}
|
| 107 |
+
},
|
| 108 |
+
{
|
| 109 |
+
"cell_type": "code",
|
| 110 |
+
"source": [
|
| 111 |
+
"\n",
|
| 112 |
+
"class LiteRTLlmPipeline:\n",
|
| 113 |
+
"\n",
|
| 114 |
+
" def __init__(self, interpreter, tokenizer):\n",
|
| 115 |
+
" \"\"\"Initializes the pipeline.\"\"\"\n",
|
| 116 |
+
" self._interpreter = interpreter\n",
|
| 117 |
+
" self._tokenizer = tokenizer\n",
|
| 118 |
+
"\n",
|
| 119 |
+
" self._prefill_runner = None\n",
|
| 120 |
+
" self._decode_runner = self._interpreter.get_signature_runner(\"decode\")\n",
|
| 121 |
+
"\n",
|
| 122 |
+
"\n",
|
| 123 |
+
" def _init_prefill_runner(self, num_input_tokens: int):\n",
|
| 124 |
+
" \"\"\"Initializes all the variables related to the prefill runner.\n",
|
| 125 |
+
"\n",
|
| 126 |
+
" This method initializes the following variables:\n",
|
| 127 |
+
" - self._prefill_runner: The prefill runner based on the input size.\n",
|
| 128 |
+
" - self._max_seq_len: The maximum sequence length supported by the model.\n",
|
| 129 |
+
" - self._max_kv_cache_seq_len: The maximum sequence length supported by the\n",
|
| 130 |
+
" KV cache.\n",
|
| 131 |
+
" - self._num_layers: The number of layers in the model.\n",
|
| 132 |
+
"\n",
|
| 133 |
+
" Args:\n",
|
| 134 |
+
" num_input_tokens: The number of input tokens.\n",
|
| 135 |
+
" \"\"\"\n",
|
| 136 |
+
"\n",
|
| 137 |
+
" self._prefill_runner = self._get_prefill_runner(num_input_tokens)\n",
|
| 138 |
+
" # input_token_shape has shape (batch, max_seq_len)\n",
|
| 139 |
+
" input_token_shape = self._prefill_runner.get_input_details()[\"tokens\"][\n",
|
| 140 |
+
" \"shape\"\n",
|
| 141 |
+
" ]\n",
|
| 142 |
+
" if len(input_token_shape) == 1:\n",
|
| 143 |
+
" self._max_seq_len = input_token_shape[0]\n",
|
| 144 |
+
" else:\n",
|
| 145 |
+
" self._max_seq_len = input_token_shape[1]\n",
|
| 146 |
+
"\n",
|
| 147 |
+
" # kv cache input has shape [batch=1, seq_len, num_heads, dim].\n",
|
| 148 |
+
" kv_cache_shape = self._prefill_runner.get_input_details()[\"kv_cache_k_0\"][\n",
|
| 149 |
+
" \"shape\"\n",
|
| 150 |
+
" ]\n",
|
| 151 |
+
" self._max_kv_cache_seq_len = kv_cache_shape[1]\n",
|
| 152 |
+
"\n",
|
| 153 |
+
" # The two arguments excluded are `tokens` and `input_pos`. Dividing by 2\n",
|
| 154 |
+
" # because each layer has key and value caches.\n",
|
| 155 |
+
" self._num_layers = (\n",
|
| 156 |
+
" len(self._prefill_runner.get_input_details().keys()) - 2\n",
|
| 157 |
+
" ) // 2\n",
|
| 158 |
+
"\n",
|
| 159 |
+
"\n",
|
| 160 |
+
" def _init_kv_cache(self) -> dict[str, np.ndarray]:\n",
|
| 161 |
+
" if self._prefill_runner is None:\n",
|
| 162 |
+
" raise ValueError(\"Prefill runner is not initialized.\")\n",
|
| 163 |
+
" kv_cache = {}\n",
|
| 164 |
+
" for i in range(self._num_layers):\n",
|
| 165 |
+
" kv_cache[f\"kv_cache_k_{i}\"] = np.zeros(\n",
|
| 166 |
+
" self._prefill_runner.get_input_details()[f\"kv_cache_k_{i}\"][\"shape\"],\n",
|
| 167 |
+
" dtype=np.float32,\n",
|
| 168 |
+
" )\n",
|
| 169 |
+
" kv_cache[f\"kv_cache_v_{i}\"] = np.zeros(\n",
|
| 170 |
+
" self._prefill_runner.get_input_details()[f\"kv_cache_v_{i}\"][\"shape\"],\n",
|
| 171 |
+
" dtype=np.float32,\n",
|
| 172 |
+
" )\n",
|
| 173 |
+
" return kv_cache\n",
|
| 174 |
+
"\n",
|
| 175 |
+
" def _get_prefill_runner(self, num_input_tokens: int) :\n",
|
| 176 |
+
" \"\"\"Gets the prefill runner with the best suitable input size.\n",
|
| 177 |
+
"\n",
|
| 178 |
+
" Args:\n",
|
| 179 |
+
" num_input_tokens: The number of input tokens.\n",
|
| 180 |
+
"\n",
|
| 181 |
+
" Returns:\n",
|
| 182 |
+
" The prefill runner with the smallest input size.\n",
|
| 183 |
+
" \"\"\"\n",
|
| 184 |
+
" best_signature = None\n",
|
| 185 |
+
" delta = sys.maxsize\n",
|
| 186 |
+
" max_prefill_len = -1\n",
|
| 187 |
+
" for key in self._interpreter.get_signature_list().keys():\n",
|
| 188 |
+
" if \"prefill\" not in key:\n",
|
| 189 |
+
" continue\n",
|
| 190 |
+
" input_pos = self._interpreter.get_signature_runner(key).get_input_details()[\n",
|
| 191 |
+
" \"input_pos\"\n",
|
| 192 |
+
" ]\n",
|
| 193 |
+
" # input_pos[\"shape\"] has shape (max_seq_len, )\n",
|
| 194 |
+
" seq_size = input_pos[\"shape\"][0]\n",
|
| 195 |
+
" max_prefill_len = max(max_prefill_len, seq_size)\n",
|
| 196 |
+
" if num_input_tokens <= seq_size and seq_size - num_input_tokens < delta:\n",
|
| 197 |
+
" delta = seq_size - num_input_tokens\n",
|
| 198 |
+
" best_signature = key\n",
|
| 199 |
+
" if best_signature is None:\n",
|
| 200 |
+
" raise ValueError(\n",
|
| 201 |
+
" \"The largest prefill length supported is %d, but we have %d number of input tokens\"\n",
|
| 202 |
+
" %(max_prefill_len, num_input_tokens)\n",
|
| 203 |
+
" )\n",
|
| 204 |
+
" return self._interpreter.get_signature_runner(best_signature)\n",
|
| 205 |
+
"\n",
|
| 206 |
+
" def _greedy_sampler(self, logits: np.ndarray) -> int:\n",
|
| 207 |
+
" return int(np.argmax(logits))\n",
|
| 208 |
+
"\n",
|
| 209 |
+
" def generate(self, prompt: str, max_decode_steps: int | None = None) -> str:\n",
|
| 210 |
+
" messages=[{ 'role': 'user', 'content': prompt}]\n",
|
| 211 |
+
" token_ids = self._tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True)\n",
|
| 212 |
+
" # Initialize the prefill runner with the suitable input size.\n",
|
| 213 |
+
" self._init_prefill_runner(len(token_ids))\n",
|
| 214 |
+
"\n",
|
| 215 |
+
" actual_max_decode_steps = self._max_kv_cache_seq_len - len(token_ids)\n",
|
| 216 |
+
" if max_decode_steps is not None:\n",
|
| 217 |
+
" actual_max_decode_steps = min(actual_max_decode_steps, max_decode_steps)\n",
|
| 218 |
+
"\n",
|
| 219 |
+
" input_token_ids = [0] * self._max_seq_len\n",
|
| 220 |
+
" input_token_ids[:len(token_ids)] = token_ids\n",
|
| 221 |
+
" model_inputs = self._init_kv_cache()\n",
|
| 222 |
+
" model_inputs.update({\n",
|
| 223 |
+
" \"tokens\": np.asarray([input_token_ids], dtype=np.int32),\n",
|
| 224 |
+
" \"input_pos\": np.arange(self._max_seq_len, dtype=np.int32),\n",
|
| 225 |
+
" })\n",
|
| 226 |
+
" decode_text = []\n",
|
| 227 |
+
" decode_step = 0\n",
|
| 228 |
+
" print('Running prefill')\n",
|
| 229 |
+
" for step in range(actual_max_decode_steps+1):\n",
|
| 230 |
+
" signature_runner = self._prefill_runner if step == 0 else self._decode_runner\n",
|
| 231 |
+
" model_outputs = signature_runner(**model_inputs)\n",
|
| 232 |
+
" # At prefill stage, output logits has shape (batch=1, seq_size, vocab_size)\n",
|
| 233 |
+
" # At decode stage, output logits has shape (batch=1, 1, vocab_size).\n",
|
| 234 |
+
" selected_logit = len(token_ids)-1 if step == 0 else 0\n",
|
| 235 |
+
" logits = model_outputs.pop(\"logits\")[0][selected_logit]\n",
|
| 236 |
+
"\n",
|
| 237 |
+
" if step == 0:\n",
|
| 238 |
+
" print('Running decode')\n",
|
| 239 |
+
"\n",
|
| 240 |
+
" # Decode text output.\n",
|
| 241 |
+
" next_token = self._greedy_sampler(logits)\n",
|
| 242 |
+
" if next_token == self._tokenizer.eos_token_id:\n",
|
| 243 |
+
" break\n",
|
| 244 |
+
" decode_text.append(self._tokenizer.decode(next_token, skip_special_tokens=False))\n",
|
| 245 |
+
" print(decode_text[-1], end='', flush=True)\n",
|
| 246 |
+
" # The rest of the outputs is the updated kv cache.\n",
|
| 247 |
+
" model_inputs = model_outputs\n",
|
| 248 |
+
" model_inputs.update({\n",
|
| 249 |
+
" \"tokens\": np.array([[next_token]], dtype=np.int32),\n",
|
| 250 |
+
" \"input_pos\": np.array([decode_step + len(token_ids)], dtype=np.int32),})\n",
|
| 251 |
+
" decode_step += 1\n",
|
| 252 |
+
"\n",
|
| 253 |
+
"\n",
|
| 254 |
+
"\n",
|
| 255 |
+
" print() # print a new line at the end.\n",
|
| 256 |
+
" return ''.join(decode_text)\n"
|
| 257 |
+
],
|
| 258 |
+
"metadata": {
|
| 259 |
+
"id": "UBSGrHrM4ANm"
|
| 260 |
+
},
|
| 261 |
+
"execution_count": null,
|
| 262 |
+
"outputs": []
|
| 263 |
+
},
|
| 264 |
+
{
|
| 265 |
+
"cell_type": "markdown",
|
| 266 |
+
"source": [
|
| 267 |
+
"# Generate text from model"
|
| 268 |
+
],
|
| 269 |
+
"metadata": {
|
| 270 |
+
"id": "dASKx_JtYXwe"
|
| 271 |
+
}
|
| 272 |
+
},
|
| 273 |
+
{
|
| 274 |
+
"cell_type": "code",
|
| 275 |
+
"source": [
|
| 276 |
+
"# Disclaimer: Model performance demonstrated with the Python API in this notebook is not representative of performance on a local device.\n",
|
| 277 |
+
"pipeline = LiteRTLlmPipeline(interpreter, tokenizer)"
|
| 278 |
+
],
|
| 279 |
+
"metadata": {
|
| 280 |
+
"id": "AZhlDQWg61AL"
|
| 281 |
+
},
|
| 282 |
+
"execution_count": null,
|
| 283 |
+
"outputs": []
|
| 284 |
+
},
|
| 285 |
+
{
|
| 286 |
+
"cell_type": "code",
|
| 287 |
+
"source": [
|
| 288 |
+
"prompt = \"what is 8 mod 5\"\n",
|
| 289 |
+
"output = pipeline.generate(prompt, max_decode_steps = None)"
|
| 290 |
+
],
|
| 291 |
+
"metadata": {
|
| 292 |
+
"id": "wT9BIiATkjzL"
|
| 293 |
+
},
|
| 294 |
+
"execution_count": null,
|
| 295 |
+
"outputs": []
|
| 296 |
+
},
|
| 297 |
+
{
|
| 298 |
+
"cell_type": "code",
|
| 299 |
+
"source": [],
|
| 300 |
+
"metadata": {
|
| 301 |
+
"id": "GNzDBxDFEuAJ"
|
| 302 |
+
},
|
| 303 |
+
"execution_count": null,
|
| 304 |
+
"outputs": []
|
| 305 |
+
}
|
| 306 |
+
]
|
| 307 |
+
}
|