Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: katuni4ka/tiny-random-qwen1.5-moe
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 43f734d01e4861d3_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/43f734d01e4861d3_train_data.json
  type:
    field_input: testcase
    field_instruction: instruction
    field_output: output
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 3
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 500
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: true
hub_model_id: lesso16/417ee334-17a2-4d4c-8f00-b7b4325cce09
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.000216
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 50
lora_alpha: 128
lora_dropout: 0.15
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 9000
micro_batch_size: 4
mlflow_experiment_name: /tmp/43f734d01e4861d3_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optimizer: adamw_torch_fused
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 500
saves_per_epoch: null
seed: 160
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: faf9ea99-82da-4871-8caa-b5447c2da5f9
wandb_project: 16a
wandb_run: your_name
wandb_runid: faf9ea99-82da-4871-8caa-b5447c2da5f9
warmup_steps: 100
weight_decay: 0.0
xformers_attention: null

417ee334-17a2-4d4c-8f00-b7b4325cce09

This model is a fine-tuned version of katuni4ka/tiny-random-qwen1.5-moe on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 11.5387

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.000216
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 160
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • training_steps: 9000

Training results

Training Loss Epoch Step Validation Loss
No log 0.0003 1 11.9301
11.6342 0.1437 500 11.6307
11.6202 0.2875 1000 11.6048
11.5994 0.4312 1500 11.5861
11.5912 0.5749 2000 11.5730
11.5788 0.7186 2500 11.5651
11.5702 0.8624 3000 11.5571
11.6381 1.0061 3500 11.5519
11.5565 1.1498 4000 11.5485
11.5557 1.2936 4500 11.5465
11.5574 1.4373 5000 11.5441
11.5434 1.5810 5500 11.5425
11.5525 1.7248 6000 11.5413
11.5419 1.8685 6500 11.5404
11.6024 2.0122 7000 11.5395
11.5531 2.1559 7500 11.5390
11.5662 2.2997 8000 11.5389
11.5531 2.4434 8500 11.5387
11.5524 2.5871 9000 11.5387

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
9
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for lesso16/417ee334-17a2-4d4c-8f00-b7b4325cce09

Adapter
(244)
this model