See axolotl config
axolotl version: 0.4.1
adapter: lora
auto_find_batch_size: true
base_model: EleutherAI/pythia-160m
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- cabe0edc52f1824b_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/cabe0edc52f1824b_train_data.json
type:
field_input: policy
field_instruction: redteam_query
field_output: jailbreak_query
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 50
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: true
hub_model_id: lesso15/c3f65866-6aac-4af2-bf57-c2f988805e1c
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.000215
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 500
micro_batch_size: 4
mlflow_experiment_name: /tmp/cabe0edc52f1824b_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
seed: 150
sequence_len: 512
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 2677b7fe-e0a2-439d-a729-54f9c5263ad0
wandb_project: 15a
wandb_run: your_name
wandb_runid: 2677b7fe-e0a2-439d-a729-54f9c5263ad0
warmup_steps: 50
weight_decay: 0.0
xformers_attention: null
c3f65866-6aac-4af2-bf57-c2f988805e1c
This model is a fine-tuned version of EleutherAI/pythia-160m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 3.3224
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.000215
- train_batch_size: 4
- eval_batch_size: 4
- seed: 150
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 500
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0003 | 1 | 5.0190 |
7.6046 | 0.0150 | 50 | 4.5107 |
4.9709 | 0.0301 | 100 | 4.1166 |
3.8113 | 0.0451 | 150 | 4.0195 |
3.6146 | 0.0602 | 200 | 4.2103 |
3.0858 | 0.0752 | 250 | 3.7491 |
3.1248 | 0.0903 | 300 | 3.5407 |
3.0528 | 0.1053 | 350 | 3.3760 |
2.9578 | 0.1204 | 400 | 3.3369 |
3.0998 | 0.1354 | 450 | 3.3323 |
3.1063 | 0.1505 | 500 | 3.3224 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
HF Inference deployability: The model has no pipeline_tag.
Model tree for lesso15/c3f65866-6aac-4af2-bf57-c2f988805e1c
Base model
EleutherAI/pythia-160m