See axolotl config
axolotl version: 0.4.1
adapter: lora
auto_find_batch_size: true
base_model: unsloth/tinyllama
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 1619d5c4fda918de_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/1619d5c4fda918de_train_data.json
type:
field_instruction: input
field_output: output
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 50
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: true
hub_model_id: lesso11/3b382598-1f93-4a7e-9e82-6ce487b75680
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.000211
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 500
micro_batch_size: 4
mlflow_experiment_name: /tmp/G.O.D/1619d5c4fda918de_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 512
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 2eb125f1-90ad-4f03-b5c4-0c8811b4e008
wandb_project: 11a
wandb_run: your_name
wandb_runid: 2eb125f1-90ad-4f03-b5c4-0c8811b4e008
warmup_steps: 50
weight_decay: 0.0
xformers_attention: null
3b382598-1f93-4a7e-9e82-6ce487b75680
This model is a fine-tuned version of unsloth/tinyllama on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.2482
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.000211
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 500
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0000 | 1 | 4.7314 |
2.718 | 0.0013 | 50 | 2.7247 |
2.5151 | 0.0026 | 100 | 2.7012 |
2.467 | 0.0039 | 150 | 2.5578 |
2.5446 | 0.0052 | 200 | 2.5113 |
2.5086 | 0.0064 | 250 | 2.4349 |
2.4453 | 0.0077 | 300 | 2.3775 |
2.1482 | 0.0090 | 350 | 2.2939 |
2.3545 | 0.0103 | 400 | 2.2605 |
2.1774 | 0.0116 | 450 | 2.2509 |
2.2289 | 0.0129 | 500 | 2.2482 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 7
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for lesso11/3b382598-1f93-4a7e-9e82-6ce487b75680
Base model
unsloth/tinyllama