See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: katuni4ka/tiny-random-qwen1.5-moe
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 43f734d01e4861d3_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/43f734d01e4861d3_train_data.json
type:
field_input: testcase
field_instruction: instruction
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 3
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 500
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: true
hub_model_id: lesso09/3838a51b-0133-48f9-9615-bfd2e48c9d48
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.000209
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 50
lora_alpha: 128
lora_dropout: 0.15
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 9000
micro_batch_size: 4
mlflow_experiment_name: /tmp/43f734d01e4861d3_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optimizer: adamw_torch_fused
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 500
saves_per_epoch: null
seed: 90
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: faf9ea99-82da-4871-8caa-b5447c2da5f9
wandb_project: 09a
wandb_run: your_name
wandb_runid: faf9ea99-82da-4871-8caa-b5447c2da5f9
warmup_steps: 100
weight_decay: 0.0
xformers_attention: null
3838a51b-0133-48f9-9615-bfd2e48c9d48
This model is a fine-tuned version of katuni4ka/tiny-random-qwen1.5-moe on the None dataset. It achieves the following results on the evaluation set:
- Loss: 11.5435
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.000209
- train_batch_size: 4
- eval_batch_size: 4
- seed: 90
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 9000
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0003 | 1 | 11.9301 |
11.6397 | 0.1437 | 500 | 11.6333 |
11.6184 | 0.2875 | 1000 | 11.6053 |
11.5982 | 0.4312 | 1500 | 11.5863 |
11.5901 | 0.5749 | 2000 | 11.5739 |
11.585 | 0.7186 | 2500 | 11.5655 |
11.5789 | 0.8624 | 3000 | 11.5599 |
11.6416 | 1.0061 | 3500 | 11.5548 |
11.5702 | 1.1498 | 4000 | 11.5518 |
11.5693 | 1.2936 | 4500 | 11.5500 |
11.5647 | 1.4373 | 5000 | 11.5480 |
11.5669 | 1.5810 | 5500 | 11.5469 |
11.5674 | 1.7248 | 6000 | 11.5459 |
11.5629 | 1.8685 | 6500 | 11.5448 |
11.6249 | 2.0122 | 7000 | 11.5443 |
11.5669 | 2.1559 | 7500 | 11.5441 |
11.562 | 2.2997 | 8000 | 11.5435 |
11.5595 | 2.4434 | 8500 | 11.5435 |
11.5535 | 2.5871 | 9000 | 11.5435 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 11
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for lesso09/3838a51b-0133-48f9-9615-bfd2e48c9d48
Base model
katuni4ka/tiny-random-qwen1.5-moe