Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: furiosa-ai/mlperf-gpt-j-6b
bf16: true
chat_template: llama3
datasets:
- data_files:
  - 85c9b5781fe7b308_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/85c9b5781fe7b308_train_data.json
  type:
    field_instruction: prompt
    field_output: response
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 5
eval_table_size: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: lesso05/7bcea4b2-479a-4f14-bbf1-459064d82a6a
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 25
micro_batch_size: 2
mlflow_experiment_name: /tmp/85c9b5781fe7b308_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 27013a03-04d1-4c58-a01a-fc835ec82b35
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 27013a03-04d1-4c58-a01a-fc835ec82b35
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

7bcea4b2-479a-4f14-bbf1-459064d82a6a

This model is a fine-tuned version of furiosa-ai/mlperf-gpt-j-6b on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6109

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 25

Training results

Training Loss Epoch Step Validation Loss
8.3846 0.0000 1 2.1204
7.2551 0.0001 5 2.0838
8.9268 0.0002 10 1.8777
6.0852 0.0003 15 1.6798
6.0074 0.0003 20 1.6232
7.4663 0.0004 25 1.6109

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
12
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for lesso05/7bcea4b2-479a-4f14-bbf1-459064d82a6a

Adapter
(195)
this model