Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/gemma-1.1-2b-it
bf16: true
chat_template: llama3
datasets:
- data_files:
  - 14ea35b9b5f7aca2_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/14ea35b9b5f7aca2_train_data.json
  type:
    field_instruction: Plot
    field_output: Title
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: lesso04/7dc1a8aa-b901-43aa-886f-ae9b6b964fe9
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 77GiB
max_steps: 50
micro_batch_size: 8
mlflow_experiment_name: /tmp/14ea35b9b5f7aca2_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: true
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 7dc1a8aa-b901-43aa-886f-ae9b6b964fe9
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 7dc1a8aa-b901-43aa-886f-ae9b6b964fe9
warmup_steps: 10
weight_decay: 0.01
xformers_attention: false

7dc1a8aa-b901-43aa-886f-ae9b6b964fe9

This model is a fine-tuned version of unsloth/gemma-1.1-2b-it on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.9265

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 50

Training results

Training Loss Epoch Step Validation Loss
4.1657 0.0005 1 4.2453
4.1175 0.0026 5 3.9361
3.0558 0.0051 10 3.2359
3.0397 0.0077 15 3.1175
2.9926 0.0102 20 3.0099
2.9851 0.0128 25 2.9763
3.0205 0.0153 30 2.9533
2.9615 0.0179 35 2.9384
2.9985 0.0204 40 2.9303
2.8364 0.0230 45 2.9272
2.9463 0.0255 50 2.9265

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for lesso04/7dc1a8aa-b901-43aa-886f-ae9b6b964fe9

Adapter
(316)
this model