See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: echarlaix/tiny-random-PhiForCausalLM
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- df4145ffec439e54_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/df4145ffec439e54_train_data.json
type:
field_instruction: text
field_output: text_ja
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 3
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 500
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: true
hub_model_id: lesso03/c06ad496-016e-4dba-912f-d4694b1326e5
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.000203
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 50
lora_alpha: 128
lora_dropout: 0.15
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 50000
micro_batch_size: 4
mlflow_experiment_name: /tmp/df4145ffec439e54_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optimizer: adamw_torch_fused
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 500
saves_per_epoch: null
seed: 30
sequence_len: 1024
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: c30de9d5-9d24-44e1-9b62-deb3229d1fce
wandb_project: 03a
wandb_run: your_name
wandb_runid: c30de9d5-9d24-44e1-9b62-deb3229d1fce
warmup_steps: 100
weight_decay: 0.0
xformers_attention: null
c06ad496-016e-4dba-912f-d4694b1326e5
This model is a fine-tuned version of echarlaix/tiny-random-PhiForCausalLM on the None dataset. It achieves the following results on the evaluation set:
- Loss: 6.5884
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.000203
- train_batch_size: 4
- eval_batch_size: 4
- seed: 30
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 26048
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0004 | 1 | 6.9452 |
6.6474 | 0.1920 | 500 | 6.6445 |
6.6353 | 0.3839 | 1000 | 6.6336 |
6.6273 | 0.5759 | 1500 | 6.6230 |
6.6234 | 0.7678 | 2000 | 6.6201 |
6.6209 | 0.9598 | 2500 | 6.6149 |
6.6169 | 1.1517 | 3000 | 6.6078 |
6.618 | 1.3437 | 3500 | 6.6060 |
6.6122 | 1.5357 | 4000 | 6.6016 |
6.6069 | 1.7276 | 4500 | 6.5994 |
6.6064 | 1.9196 | 5000 | 6.5984 |
6.6088 | 2.1115 | 5500 | 6.5970 |
6.6035 | 2.3035 | 6000 | 6.5960 |
6.6125 | 2.4954 | 6500 | 6.5956 |
6.6003 | 2.6874 | 7000 | 6.5950 |
6.6008 | 2.8794 | 7500 | 6.5937 |
6.6031 | 3.0713 | 8000 | 6.5941 |
6.6004 | 3.2633 | 8500 | 6.5936 |
6.6042 | 3.4552 | 9000 | 6.5931 |
6.6021 | 3.6472 | 9500 | 6.5927 |
6.6011 | 3.8391 | 10000 | 6.5925 |
6.5981 | 4.0311 | 10500 | 6.5920 |
6.5998 | 4.2231 | 11000 | 6.5916 |
6.5987 | 4.4150 | 11500 | 6.5916 |
6.6003 | 4.6070 | 12000 | 6.5915 |
6.5987 | 4.7989 | 12500 | 6.5908 |
6.6007 | 4.9909 | 13000 | 6.5910 |
6.5971 | 5.1828 | 13500 | 6.5904 |
6.6008 | 5.3748 | 14000 | 6.5898 |
6.6001 | 5.5668 | 14500 | 6.5896 |
6.5955 | 5.7587 | 15000 | 6.5894 |
6.6 | 5.9507 | 15500 | 6.5894 |
6.6004 | 6.1426 | 16000 | 6.5891 |
6.6042 | 6.3346 | 16500 | 6.5895 |
6.5999 | 6.5265 | 17000 | 6.5891 |
6.5999 | 6.7185 | 17500 | 6.5886 |
6.5996 | 6.9105 | 18000 | 6.5882 |
6.5971 | 7.1024 | 18500 | 6.5881 |
6.5959 | 7.2944 | 19000 | 6.5885 |
6.5999 | 7.4863 | 19500 | 6.5887 |
6.5977 | 7.6783 | 20000 | 6.5884 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 12
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
HF Inference deployability: The model has no pipeline_tag.
Model tree for lesso03/c06ad496-016e-4dba-912f-d4694b1326e5
Base model
echarlaix/tiny-random-PhiForCausalLM