lengocduc195's picture
pushNe
2359bda
from . import SentenceEvaluator
import logging
import numpy as np
import os
import csv
from ..util import cos_sim, dot_score
import torch
from sklearn.metrics import average_precision_score
import tqdm
logger = logging.getLogger(__name__)
class RerankingEvaluator(SentenceEvaluator):
"""
This class evaluates a SentenceTransformer model for the task of re-ranking.
Given a query and a list of documents, it computes the score [query, doc_i] for all possible
documents and sorts them in decreasing order. Then, MRR@10 and MAP is compute to measure the quality of the ranking.
:param samples: Must be a list and each element is of the form: {'query': '', 'positive': [], 'negative': []}. Query is the search query,
positive is a list of positive (relevant) documents, negative is a list of negative (irrelevant) documents.
"""
def __init__(self, samples, mrr_at_k: int = 10, name: str = '', write_csv: bool = True, similarity_fct=cos_sim, batch_size: int = 64, show_progress_bar: bool = False, use_batched_encoding: bool = True):
self.samples = samples
self.name = name
self.mrr_at_k = mrr_at_k
self.similarity_fct = similarity_fct
self.batch_size = batch_size
self.show_progress_bar = show_progress_bar
self.use_batched_encoding = use_batched_encoding
if isinstance(self.samples, dict):
self.samples = list(self.samples.values())
### Remove sample with empty positive / negative set
self.samples = [sample for sample in self.samples if len(sample['positive']) > 0 and len(sample['negative']) > 0]
self.csv_file = "RerankingEvaluator" + ("_" + name if name else '') + "_results.csv"
self.csv_headers = ["epoch", "steps", "MAP", "MRR@{}".format(mrr_at_k)]
self.write_csv = write_csv
def __call__(self, model, output_path: str = None, epoch: int = -1, steps: int = -1) -> float:
if epoch != -1:
if steps == -1:
out_txt = " after epoch {}:".format(epoch)
else:
out_txt = " in epoch {} after {} steps:".format(epoch, steps)
else:
out_txt = ":"
logger.info("RerankingEvaluator: Evaluating the model on " + self.name + " dataset" + out_txt)
scores = self.compute_metrices(model)
mean_ap = scores['map']
mean_mrr = scores['mrr']
#### Some stats about the dataset
num_positives = [len(sample['positive']) for sample in self.samples]
num_negatives = [len(sample['negative']) for sample in self.samples]
logger.info("Queries: {} \t Positives: Min {:.1f}, Mean {:.1f}, Max {:.1f} \t Negatives: Min {:.1f}, Mean {:.1f}, Max {:.1f}".format(len(self.samples), np.min(num_positives), np.mean(num_positives),
np.max(num_positives), np.min(num_negatives),
np.mean(num_negatives), np.max(num_negatives)))
logger.info("MAP: {:.2f}".format(mean_ap * 100))
logger.info("MRR@{}: {:.2f}".format(self.mrr_at_k, mean_mrr * 100))
#### Write results to disc
if output_path is not None and self.write_csv:
csv_path = os.path.join(output_path, self.csv_file)
output_file_exists = os.path.isfile(csv_path)
with open(csv_path, newline='', mode="a" if output_file_exists else 'w', encoding="utf-8") as f:
writer = csv.writer(f)
if not output_file_exists:
writer.writerow(self.csv_headers)
writer.writerow([epoch, steps, mean_ap, mean_mrr])
return mean_ap
def compute_metrices(self, model):
return self.compute_metrices_batched(model) if self.use_batched_encoding else self.compute_metrices_individual(model)
def compute_metrices_batched(self, model):
"""
Computes the metrices in a batched way, by batching all queries and
all documents together
"""
all_mrr_scores = []
all_ap_scores = []
all_query_embs = model.encode([sample['query'] for sample in self.samples],
convert_to_tensor=True,
batch_size=self.batch_size,
show_progress_bar=self.show_progress_bar)
all_docs = []
for sample in self.samples:
all_docs.extend(sample['positive'])
all_docs.extend(sample['negative'])
all_docs_embs = model.encode(all_docs,
convert_to_tensor=True,
batch_size=self.batch_size,
show_progress_bar=self.show_progress_bar)
#Compute scores
query_idx, docs_idx = 0,0
for instance in self.samples:
query_emb = all_query_embs[query_idx]
query_idx += 1
num_pos = len(instance['positive'])
num_neg = len(instance['negative'])
docs_emb = all_docs_embs[docs_idx:docs_idx+num_pos+num_neg]
docs_idx += num_pos+num_neg
if num_pos == 0 or num_neg == 0:
continue
pred_scores = self.similarity_fct(query_emb, docs_emb)
if len(pred_scores.shape) > 1:
pred_scores = pred_scores[0]
pred_scores_argsort = torch.argsort(-pred_scores) #Sort in decreasing order
#Compute MRR score
is_relevant = [True]*num_pos + [False]*num_neg
mrr_score = 0
for rank, index in enumerate(pred_scores_argsort[0:self.mrr_at_k]):
if is_relevant[index]:
mrr_score = 1 / (rank+1)
break
all_mrr_scores.append(mrr_score)
# Compute AP
all_ap_scores.append(average_precision_score(is_relevant, pred_scores.cpu().tolist()))
mean_ap = np.mean(all_ap_scores)
mean_mrr = np.mean(all_mrr_scores)
return {'map': mean_ap, 'mrr': mean_mrr}
def compute_metrices_individual(self, model):
"""
Embeds every (query, positive, negative) tuple individually.
Is slower than the batched version, but saves memory as only the
embeddings for one tuple are needed. Useful when you have
a really large test set
"""
all_mrr_scores = []
all_ap_scores = []
for instance in tqdm.tqdm(self.samples, disable=not self.show_progress_bar, desc="Samples"):
query = instance['query']
positive = list(instance['positive'])
negative = list(instance['negative'])
if len(positive) == 0 or len(negative) == 0:
continue
docs = positive + negative
is_relevant = [True]*len(positive) + [False]*len(negative)
query_emb = model.encode([query], convert_to_tensor=True, batch_size=self.batch_size, show_progress_bar=False)
docs_emb = model.encode(docs, convert_to_tensor=True, batch_size=self.batch_size, show_progress_bar=False)
pred_scores = self.similarity_fct(query_emb, docs_emb)
if len(pred_scores.shape) > 1:
pred_scores = pred_scores[0]
pred_scores_argsort = torch.argsort(-pred_scores) #Sort in decreasing order
#Compute MRR score
mrr_score = 0
for rank, index in enumerate(pred_scores_argsort[0:self.mrr_at_k]):
if is_relevant[index]:
mrr_score = 1 / (rank+1)
break
all_mrr_scores.append(mrr_score)
# Compute AP
all_ap_scores.append(average_precision_score(is_relevant, pred_scores.cpu().tolist()))
mean_ap = np.mean(all_ap_scores)
mean_mrr = np.mean(all_mrr_scores)
return {'map': mean_ap, 'mrr': mean_mrr}