File size: 8,113 Bytes
2359bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
from . import SentenceEvaluator
import logging
import numpy as np
import os
import csv
from ..util import cos_sim, dot_score
import torch
from sklearn.metrics import average_precision_score
import tqdm

logger = logging.getLogger(__name__)

class RerankingEvaluator(SentenceEvaluator):
    """
    This class evaluates a SentenceTransformer model for the task of re-ranking.

    Given a query and a list of documents, it computes the score [query, doc_i] for all possible
    documents and sorts them in decreasing order. Then, MRR@10 and MAP is compute to measure the quality of the ranking.

    :param samples: Must be a list and each element is of the form: {'query': '', 'positive': [], 'negative': []}. Query is the search query,
     positive is a list of positive (relevant) documents, negative is a list of negative (irrelevant) documents.
    """
    def __init__(self, samples, mrr_at_k: int = 10, name: str = '', write_csv: bool = True, similarity_fct=cos_sim, batch_size: int = 64, show_progress_bar: bool = False, use_batched_encoding: bool = True):
        self.samples = samples
        self.name = name
        self.mrr_at_k = mrr_at_k
        self.similarity_fct = similarity_fct
        self.batch_size = batch_size
        self.show_progress_bar = show_progress_bar
        self.use_batched_encoding = use_batched_encoding

        if isinstance(self.samples, dict):
            self.samples = list(self.samples.values())

        ### Remove sample with empty positive / negative set
        self.samples = [sample for sample in self.samples if len(sample['positive']) > 0 and len(sample['negative']) > 0]


        self.csv_file = "RerankingEvaluator" + ("_" + name if name else '') + "_results.csv"
        self.csv_headers = ["epoch", "steps", "MAP", "MRR@{}".format(mrr_at_k)]
        self.write_csv = write_csv

    def __call__(self, model, output_path: str = None, epoch: int = -1, steps: int = -1) -> float:
        if epoch != -1:
            if steps == -1:
                out_txt = " after epoch {}:".format(epoch)
            else:
                out_txt = " in epoch {} after {} steps:".format(epoch, steps)
        else:
            out_txt = ":"

        logger.info("RerankingEvaluator: Evaluating the model on " + self.name + " dataset" + out_txt)


        scores = self.compute_metrices(model)
        mean_ap = scores['map']
        mean_mrr = scores['mrr']

        #### Some stats about the dataset
        num_positives = [len(sample['positive']) for sample in self.samples]
        num_negatives = [len(sample['negative']) for sample in self.samples]

        logger.info("Queries: {} \t Positives: Min {:.1f}, Mean {:.1f}, Max {:.1f} \t Negatives: Min {:.1f}, Mean {:.1f}, Max {:.1f}".format(len(self.samples), np.min(num_positives), np.mean(num_positives),
                                                                                                                                             np.max(num_positives), np.min(num_negatives),
                                                                                                                                             np.mean(num_negatives), np.max(num_negatives)))
        logger.info("MAP: {:.2f}".format(mean_ap * 100))
        logger.info("MRR@{}: {:.2f}".format(self.mrr_at_k, mean_mrr * 100))

        #### Write results to disc
        if output_path is not None and self.write_csv:
            csv_path = os.path.join(output_path, self.csv_file)
            output_file_exists = os.path.isfile(csv_path)
            with open(csv_path, newline='', mode="a" if output_file_exists else 'w', encoding="utf-8") as f:
                writer = csv.writer(f)
                if not output_file_exists:
                    writer.writerow(self.csv_headers)

                writer.writerow([epoch, steps, mean_ap, mean_mrr])

        return mean_ap

    def compute_metrices(self, model):
        return self.compute_metrices_batched(model) if self.use_batched_encoding else self.compute_metrices_individual(model)

    def compute_metrices_batched(self, model):
        """
        Computes the metrices in a batched way, by batching all queries and
        all documents together
        """
        all_mrr_scores = []
        all_ap_scores = []

        all_query_embs = model.encode([sample['query'] for sample in self.samples],
                                  convert_to_tensor=True,
                                  batch_size=self.batch_size,
                                  show_progress_bar=self.show_progress_bar)

        all_docs = []

        for sample in self.samples:
            all_docs.extend(sample['positive'])
            all_docs.extend(sample['negative'])

        all_docs_embs = model.encode(all_docs,
                                    convert_to_tensor=True,
                                    batch_size=self.batch_size,
                                    show_progress_bar=self.show_progress_bar)

        #Compute scores
        query_idx, docs_idx = 0,0
        for instance in self.samples:
            query_emb = all_query_embs[query_idx]
            query_idx += 1

            num_pos = len(instance['positive'])
            num_neg = len(instance['negative'])
            docs_emb = all_docs_embs[docs_idx:docs_idx+num_pos+num_neg]
            docs_idx += num_pos+num_neg

            if num_pos == 0 or num_neg == 0:
                continue

            pred_scores = self.similarity_fct(query_emb, docs_emb)
            if len(pred_scores.shape) > 1:
                pred_scores = pred_scores[0]

            pred_scores_argsort = torch.argsort(-pred_scores)  #Sort in decreasing order

            #Compute MRR score
            is_relevant = [True]*num_pos + [False]*num_neg
            mrr_score = 0
            for rank, index in enumerate(pred_scores_argsort[0:self.mrr_at_k]):
                if is_relevant[index]:
                    mrr_score = 1 / (rank+1)
                    break
            all_mrr_scores.append(mrr_score)

            # Compute AP
            all_ap_scores.append(average_precision_score(is_relevant, pred_scores.cpu().tolist()))

        mean_ap = np.mean(all_ap_scores)
        mean_mrr = np.mean(all_mrr_scores)

        return {'map': mean_ap, 'mrr': mean_mrr}


    def compute_metrices_individual(self, model):
        """
        Embeds every (query, positive, negative) tuple individually.
        Is slower than the batched version, but saves memory as only the
        embeddings for one tuple are needed. Useful when you have
        a really large test set
        """
        all_mrr_scores = []
        all_ap_scores = []


        for instance in tqdm.tqdm(self.samples, disable=not self.show_progress_bar, desc="Samples"):
            query = instance['query']
            positive = list(instance['positive'])
            negative = list(instance['negative'])

            if len(positive) == 0 or len(negative) == 0:
                continue

            docs = positive + negative
            is_relevant = [True]*len(positive) + [False]*len(negative)

            query_emb = model.encode([query], convert_to_tensor=True, batch_size=self.batch_size, show_progress_bar=False)
            docs_emb = model.encode(docs, convert_to_tensor=True, batch_size=self.batch_size, show_progress_bar=False)

            pred_scores = self.similarity_fct(query_emb, docs_emb)
            if len(pred_scores.shape) > 1:
                pred_scores = pred_scores[0]

            pred_scores_argsort = torch.argsort(-pred_scores)  #Sort in decreasing order

            #Compute MRR score
            mrr_score = 0
            for rank, index in enumerate(pred_scores_argsort[0:self.mrr_at_k]):
                if is_relevant[index]:
                    mrr_score = 1 / (rank+1)
                    break
            all_mrr_scores.append(mrr_score)

            # Compute AP
            all_ap_scores.append(average_precision_score(is_relevant, pred_scores.cpu().tolist()))

        mean_ap = np.mean(all_ap_scores)
        mean_mrr = np.mean(all_mrr_scores)

        return {'map': mean_ap, 'mrr': mean_mrr}