|
""" |
|
The system trains BERT (or any other transformer model like RoBERTa, DistilBERT etc.) on the SNLI + MultiNLI (AllNLI) dataset |
|
with MultipleNegativesRankingLoss. Entailnments are poisitive pairs and the contradiction on AllNLI dataset is added as a hard negative. |
|
At every 10% training steps, the model is evaluated on the STS benchmark dataset |
|
|
|
Usage: |
|
python training_nli_v2.py |
|
|
|
OR |
|
python training_nli_v2.py pretrained_transformer_model_name |
|
""" |
|
import math |
|
from sentence_transformers import models, losses, datasets |
|
from sentence_transformers import LoggingHandler, SentenceTransformer, util, InputExample |
|
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator |
|
import logging |
|
from datetime import datetime |
|
import sys |
|
import os |
|
import gzip |
|
import csv |
|
import random |
|
|
|
|
|
logging.basicConfig(format='%(asctime)s - %(message)s', |
|
datefmt='%Y-%m-%d %H:%M:%S', |
|
level=logging.INFO, |
|
handlers=[LoggingHandler()]) |
|
|
|
|
|
model_name = sys.argv[1] if len(sys.argv) > 1 else 'distilroberta-base' |
|
train_batch_size = 128 |
|
max_seq_length = 75 |
|
num_epochs = 1 |
|
|
|
|
|
model_save_path = 'output/training_nli_v2_'+model_name.replace("/", "-")+'-'+datetime.now().strftime("%Y-%m-%d_%H-%M-%S") |
|
|
|
|
|
|
|
word_embedding_model = models.Transformer(model_name, max_seq_length=max_seq_length) |
|
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), pooling_mode='mean') |
|
model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) |
|
|
|
|
|
nli_dataset_path = 'data/AllNLI.tsv.gz' |
|
sts_dataset_path = 'data/stsbenchmark.tsv.gz' |
|
|
|
if not os.path.exists(nli_dataset_path): |
|
util.http_get('https://sbert.net/datasets/AllNLI.tsv.gz', nli_dataset_path) |
|
|
|
if not os.path.exists(sts_dataset_path): |
|
util.http_get('https://sbert.net/datasets/stsbenchmark.tsv.gz', sts_dataset_path) |
|
|
|
|
|
|
|
logging.info("Read AllNLI train dataset") |
|
|
|
def add_to_samples(sent1, sent2, label): |
|
if sent1 not in train_data: |
|
train_data[sent1] = {'contradiction': set(), 'entailment': set(), 'neutral': set()} |
|
train_data[sent1][label].add(sent2) |
|
|
|
|
|
train_data = {} |
|
with gzip.open(nli_dataset_path, 'rt', encoding='utf8') as fIn: |
|
reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE) |
|
for row in reader: |
|
if row['split'] == 'train': |
|
sent1 = row['sentence1'].strip() |
|
sent2 = row['sentence2'].strip() |
|
|
|
add_to_samples(sent1, sent2, row['label']) |
|
add_to_samples(sent2, sent1, row['label']) |
|
|
|
|
|
train_samples = [] |
|
for sent1, others in train_data.items(): |
|
if len(others['entailment']) > 0 and len(others['contradiction']) > 0: |
|
train_samples.append(InputExample(texts=[sent1, random.choice(list(others['entailment'])), random.choice(list(others['contradiction']))])) |
|
train_samples.append(InputExample(texts=[random.choice(list(others['entailment'])), sent1, random.choice(list(others['contradiction']))])) |
|
|
|
logging.info("Train samples: {}".format(len(train_samples))) |
|
|
|
|
|
|
|
|
|
train_dataloader = datasets.NoDuplicatesDataLoader(train_samples, batch_size=train_batch_size) |
|
|
|
|
|
|
|
train_loss = losses.MultipleNegativesRankingLoss(model) |
|
|
|
|
|
|
|
|
|
|
|
logging.info("Read STSbenchmark dev dataset") |
|
dev_samples = [] |
|
with gzip.open(sts_dataset_path, 'rt', encoding='utf8') as fIn: |
|
reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE) |
|
for row in reader: |
|
if row['split'] == 'dev': |
|
score = float(row['score']) / 5.0 |
|
dev_samples.append(InputExample(texts=[row['sentence1'], row['sentence2']], label=score)) |
|
|
|
dev_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, batch_size=train_batch_size, name='sts-dev') |
|
|
|
|
|
warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) |
|
logging.info("Warmup-steps: {}".format(warmup_steps)) |
|
|
|
|
|
|
|
model.fit(train_objectives=[(train_dataloader, train_loss)], |
|
evaluator=dev_evaluator, |
|
epochs=num_epochs, |
|
evaluation_steps=int(len(train_dataloader)*0.1), |
|
warmup_steps=warmup_steps, |
|
output_path=model_save_path, |
|
use_amp=False |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
test_samples = [] |
|
with gzip.open(sts_dataset_path, 'rt', encoding='utf8') as fIn: |
|
reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE) |
|
for row in reader: |
|
if row['split'] == 'test': |
|
score = float(row['score']) / 5.0 |
|
test_samples.append(InputExample(texts=[row['sentence1'], row['sentence2']], label=score)) |
|
|
|
model = SentenceTransformer(model_save_path) |
|
test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, batch_size=train_batch_size, name='sts-test') |
|
test_evaluator(model, output_path=model_save_path) |
|
|