""" The system trains BERT (or any other transformer model like RoBERTa, DistilBERT etc.) on the SNLI + MultiNLI (AllNLI) dataset with MultipleNegativesRankingLoss. Entailnments are poisitive pairs and the contradiction on AllNLI dataset is added as a hard negative. At every 10% training steps, the model is evaluated on the STS benchmark dataset Usage: python training_nli_v2.py OR python training_nli_v2.py pretrained_transformer_model_name """ import math from sentence_transformers import models, losses, datasets from sentence_transformers import LoggingHandler, SentenceTransformer, util, InputExample from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator import logging from datetime import datetime import sys import os import gzip import csv import random #### Just some code to print debug information to stdout logging.basicConfig(format='%(asctime)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=logging.INFO, handlers=[LoggingHandler()]) #### /print debug information to stdout model_name = sys.argv[1] if len(sys.argv) > 1 else 'distilroberta-base' train_batch_size = 128 #The larger you select this, the better the results (usually). But it requires more GPU memory max_seq_length = 75 num_epochs = 1 # Save path of the model model_save_path = 'output/training_nli_v2_'+model_name.replace("/", "-")+'-'+datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # Here we define our SentenceTransformer model word_embedding_model = models.Transformer(model_name, max_seq_length=max_seq_length) pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), pooling_mode='mean') model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) #Check if dataset exsist. If not, download and extract it nli_dataset_path = 'data/AllNLI.tsv.gz' sts_dataset_path = 'data/stsbenchmark.tsv.gz' if not os.path.exists(nli_dataset_path): util.http_get('https://sbert.net/datasets/AllNLI.tsv.gz', nli_dataset_path) if not os.path.exists(sts_dataset_path): util.http_get('https://sbert.net/datasets/stsbenchmark.tsv.gz', sts_dataset_path) # Read the AllNLI.tsv.gz file and create the training dataset logging.info("Read AllNLI train dataset") def add_to_samples(sent1, sent2, label): if sent1 not in train_data: train_data[sent1] = {'contradiction': set(), 'entailment': set(), 'neutral': set()} train_data[sent1][label].add(sent2) train_data = {} with gzip.open(nli_dataset_path, 'rt', encoding='utf8') as fIn: reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE) for row in reader: if row['split'] == 'train': sent1 = row['sentence1'].strip() sent2 = row['sentence2'].strip() add_to_samples(sent1, sent2, row['label']) add_to_samples(sent2, sent1, row['label']) #Also add the opposite train_samples = [] for sent1, others in train_data.items(): if len(others['entailment']) > 0 and len(others['contradiction']) > 0: train_samples.append(InputExample(texts=[sent1, random.choice(list(others['entailment'])), random.choice(list(others['contradiction']))])) train_samples.append(InputExample(texts=[random.choice(list(others['entailment'])), sent1, random.choice(list(others['contradiction']))])) logging.info("Train samples: {}".format(len(train_samples))) # Special data loader that avoid duplicates within a batch train_dataloader = datasets.NoDuplicatesDataLoader(train_samples, batch_size=train_batch_size) # Our training loss train_loss = losses.MultipleNegativesRankingLoss(model) #Read STSbenchmark dataset and use it as development set logging.info("Read STSbenchmark dev dataset") dev_samples = [] with gzip.open(sts_dataset_path, 'rt', encoding='utf8') as fIn: reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE) for row in reader: if row['split'] == 'dev': score = float(row['score']) / 5.0 #Normalize score to range 0 ... 1 dev_samples.append(InputExample(texts=[row['sentence1'], row['sentence2']], label=score)) dev_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, batch_size=train_batch_size, name='sts-dev') # Configure the training warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) #10% of train data for warm-up logging.info("Warmup-steps: {}".format(warmup_steps)) # Train the model model.fit(train_objectives=[(train_dataloader, train_loss)], evaluator=dev_evaluator, epochs=num_epochs, evaluation_steps=int(len(train_dataloader)*0.1), warmup_steps=warmup_steps, output_path=model_save_path, use_amp=False #Set to True, if your GPU supports FP16 operations ) ############################################################################## # # Load the stored model and evaluate its performance on STS benchmark dataset # ############################################################################## test_samples = [] with gzip.open(sts_dataset_path, 'rt', encoding='utf8') as fIn: reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE) for row in reader: if row['split'] == 'test': score = float(row['score']) / 5.0 #Normalize score to range 0 ... 1 test_samples.append(InputExample(texts=[row['sentence1'], row['sentence2']], label=score)) model = SentenceTransformer(model_save_path) test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, batch_size=train_batch_size, name='sts-test') test_evaluator(model, output_path=model_save_path)