|
""" |
|
This script is identical to examples/training/sts/training_stsbenchmark.py with seed optimization. |
|
We apply early stopping and evaluate the models over the dev set, to find out the best perfoming seeds. |
|
|
|
For more details refer to - |
|
Fine-Tuning Pretrained Language Models: |
|
Weight Initializations, Data Orders, and Early Stopping by Dodge et al. 2020 |
|
https://arxiv.org/pdf/2002.06305.pdf |
|
|
|
Why Seed Optimization? |
|
Dodge et al. (2020) show a high dependence on the random seed for transformer based models like BERT, |
|
as it converges to different minima that generalize differently to unseen data. This is especially the |
|
case for small training datasets. |
|
|
|
Citation: https://arxiv.org/abs/2010.08240 |
|
|
|
Usage: |
|
python train_sts_seed_optimization.py |
|
|
|
OR |
|
python train_sts_seed_optimization.py pretrained_transformer_model_name seed_count stop_after |
|
|
|
python ttrain_sts_seed_optimization.py bert-base-uncased 10 0.3 |
|
""" |
|
from torch.utils.data import DataLoader |
|
import math |
|
import torch |
|
import random |
|
import numpy as np |
|
from sentence_transformers import SentenceTransformer, LoggingHandler, losses, models, util |
|
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator |
|
from sentence_transformers.readers import InputExample |
|
import logging |
|
from datetime import datetime |
|
import sys |
|
import os |
|
import gzip |
|
import csv |
|
|
|
|
|
logging.basicConfig(format='%(asctime)s - %(message)s', |
|
datefmt='%Y-%m-%d %H:%M:%S', |
|
level=logging.INFO, |
|
handlers=[LoggingHandler()]) |
|
|
|
|
|
|
|
|
|
|
|
sts_dataset_path = 'datasets/stsbenchmark.tsv.gz' |
|
|
|
if not os.path.exists(sts_dataset_path): |
|
util.http_get('https://sbert.net/datasets/stsbenchmark.tsv.gz', sts_dataset_path) |
|
|
|
|
|
|
|
|
|
model_name = sys.argv[1] if len(sys.argv) > 1 else 'bert-base-uncased' |
|
seed_count = int(sys.argv[2]) if len(sys.argv) > 2 else 10 |
|
stop_after = float(sys.argv[3]) if len(sys.argv) > 3 else 0.3 |
|
|
|
logging.info("Train and Evaluate: {} Random Seeds".format(seed_count)) |
|
|
|
for seed in range(seed_count): |
|
|
|
|
|
logging.info("##### Seed {} #####".format(seed)) |
|
random.seed(seed) |
|
np.random.seed(seed) |
|
torch.manual_seed(seed) |
|
|
|
|
|
train_batch_size = 16 |
|
num_epochs = 1 |
|
model_save_path = 'output/bi-encoder/training_stsbenchmark_'+ model_name + '/seed-'+ str(seed) |
|
|
|
|
|
word_embedding_model = models.Transformer(model_name) |
|
|
|
|
|
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), |
|
pooling_mode_mean_tokens=True, |
|
pooling_mode_cls_token=False, |
|
pooling_mode_max_tokens=False) |
|
|
|
model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) |
|
|
|
|
|
logging.info("Read STSbenchmark train dataset") |
|
|
|
train_samples = [] |
|
dev_samples = [] |
|
test_samples = [] |
|
with gzip.open(sts_dataset_path, 'rt', encoding='utf8') as fIn: |
|
reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE) |
|
for row in reader: |
|
score = float(row['score']) / 5.0 |
|
inp_example = InputExample(texts=[row['sentence1'], row['sentence2']], label=score) |
|
|
|
if row['split'] == 'dev': |
|
dev_samples.append(inp_example) |
|
elif row['split'] == 'test': |
|
test_samples.append(inp_example) |
|
else: |
|
train_samples.append(inp_example) |
|
|
|
|
|
train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size) |
|
train_loss = losses.CosineSimilarityLoss(model=model) |
|
|
|
|
|
logging.info("Read STSbenchmark dev dataset") |
|
evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name='sts-dev') |
|
|
|
|
|
|
|
warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) |
|
|
|
|
|
|
|
steps_per_epoch = math.ceil( len(train_dataset) / train_batch_size * stop_after ) |
|
|
|
logging.info("Warmup-steps: {}".format(warmup_steps)) |
|
|
|
logging.info("Early-stopping: {}% of the training-data".format(int(stop_after*100))) |
|
|
|
|
|
|
|
model.fit(train_objectives=[(train_dataloader, train_loss)], |
|
evaluator=evaluator, |
|
epochs=num_epochs, |
|
steps_per_epoch=steps_per_epoch, |
|
evaluation_steps=1000, |
|
warmup_steps=warmup_steps, |
|
output_path=model_save_path) |
|
|