""" This script is identical to examples/training/sts/training_stsbenchmark.py with seed optimization. We apply early stopping and evaluate the models over the dev set, to find out the best perfoming seeds. For more details refer to - Fine-Tuning Pretrained Language Models: Weight Initializations, Data Orders, and Early Stopping by Dodge et al. 2020 https://arxiv.org/pdf/2002.06305.pdf Why Seed Optimization? Dodge et al. (2020) show a high dependence on the random seed for transformer based models like BERT, as it converges to different minima that generalize differently to unseen data. This is especially the case for small training datasets. Citation: https://arxiv.org/abs/2010.08240 Usage: python train_sts_seed_optimization.py OR python train_sts_seed_optimization.py pretrained_transformer_model_name seed_count stop_after python ttrain_sts_seed_optimization.py bert-base-uncased 10 0.3 """ from torch.utils.data import DataLoader import math import torch import random import numpy as np from sentence_transformers import SentenceTransformer, LoggingHandler, losses, models, util from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator from sentence_transformers.readers import InputExample import logging from datetime import datetime import sys import os import gzip import csv #### Just some code to print debug information to stdout logging.basicConfig(format='%(asctime)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=logging.INFO, handlers=[LoggingHandler()]) #### /print debug information to stdout #Check if dataset exsist. If not, download and extract it sts_dataset_path = 'datasets/stsbenchmark.tsv.gz' if not os.path.exists(sts_dataset_path): util.http_get('https://sbert.net/datasets/stsbenchmark.tsv.gz', sts_dataset_path) #You can specify any huggingface/transformers pre-trained model here, for example, bert-base-uncased, roberta-base, xlm-roberta-base model_name = sys.argv[1] if len(sys.argv) > 1 else 'bert-base-uncased' seed_count = int(sys.argv[2]) if len(sys.argv) > 2 else 10 stop_after = float(sys.argv[3]) if len(sys.argv) > 3 else 0.3 logging.info("Train and Evaluate: {} Random Seeds".format(seed_count)) for seed in range(seed_count): # Setting seed for all random initializations logging.info("##### Seed {} #####".format(seed)) random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) # Read the dataset train_batch_size = 16 num_epochs = 1 model_save_path = 'output/bi-encoder/training_stsbenchmark_'+ model_name + '/seed-'+ str(seed) # Use Huggingface/transformers model (like BERT, RoBERTa, XLNet, XLM-R) for mapping tokens to embeddings word_embedding_model = models.Transformer(model_name) # Apply mean pooling to get one fixed sized sentence vector pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), pooling_mode_mean_tokens=True, pooling_mode_cls_token=False, pooling_mode_max_tokens=False) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) # Convert the dataset to a DataLoader ready for training logging.info("Read STSbenchmark train dataset") train_samples = [] dev_samples = [] test_samples = [] with gzip.open(sts_dataset_path, 'rt', encoding='utf8') as fIn: reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE) for row in reader: score = float(row['score']) / 5.0 # Normalize score to range 0 ... 1 inp_example = InputExample(texts=[row['sentence1'], row['sentence2']], label=score) if row['split'] == 'dev': dev_samples.append(inp_example) elif row['split'] == 'test': test_samples.append(inp_example) else: train_samples.append(inp_example) train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size) train_loss = losses.CosineSimilarityLoss(model=model) logging.info("Read STSbenchmark dev dataset") evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name='sts-dev') # Configure the training. We skip evaluation in this example warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) #10% of train data for warm-up # Stopping and Evaluating after 30% of training data (less than 1 epoch) # We find from (Dodge et al.) that 20-30% is often ideal for convergence of random seed steps_per_epoch = math.ceil( len(train_dataset) / train_batch_size * stop_after ) logging.info("Warmup-steps: {}".format(warmup_steps)) logging.info("Early-stopping: {}% of the training-data".format(int(stop_after*100))) # Train the model model.fit(train_objectives=[(train_dataloader, train_loss)], evaluator=evaluator, epochs=num_epochs, steps_per_epoch=steps_per_epoch, evaluation_steps=1000, warmup_steps=warmup_steps, output_path=model_save_path)