|
""" |
|
The script shows how to train Augmented SBERT (Domain-Transfer/Cross-Domain) strategy for STSb-QQP dataset. |
|
For our example below we consider STSb (source) and QQP (target) datasets respectively. |
|
|
|
Methodology: |
|
Three steps are followed for AugSBERT data-augmentation strategy with Domain Trasfer / Cross-Domain - |
|
1. Cross-Encoder aka BERT is trained over STSb (source) dataset. |
|
2. Cross-Encoder is used to label QQP training (target) dataset (Assume no labels/no annotations are provided). |
|
3. Bi-encoder aka SBERT is trained over the labeled QQP (target) dataset. |
|
|
|
Citation: https://arxiv.org/abs/2010.08240 |
|
|
|
Usage: |
|
python train_sts_qqp_crossdomain.py |
|
|
|
OR |
|
python train_sts_qqp_crossdomain.py pretrained_transformer_model_name |
|
""" |
|
from torch.utils.data import DataLoader |
|
from sentence_transformers import models, losses, util, LoggingHandler, SentenceTransformer |
|
from sentence_transformers.cross_encoder import CrossEncoder |
|
from sentence_transformers.cross_encoder.evaluation import CECorrelationEvaluator |
|
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator, BinaryClassificationEvaluator |
|
from sentence_transformers.readers import InputExample |
|
from datetime import datetime |
|
from zipfile import ZipFile |
|
import logging |
|
import csv |
|
import sys |
|
import torch |
|
import math |
|
import gzip |
|
import os |
|
|
|
|
|
|
|
logging.basicConfig(format='%(asctime)s - %(message)s', |
|
datefmt='%Y-%m-%d %H:%M:%S', |
|
level=logging.INFO, |
|
handlers=[LoggingHandler()]) |
|
|
|
|
|
|
|
model_name = sys.argv[1] if len(sys.argv) > 1 else 'bert-base-uncased' |
|
batch_size = 16 |
|
num_epochs = 1 |
|
max_seq_length = 128 |
|
use_cuda = torch.cuda.is_available() |
|
|
|
|
|
sts_dataset_path = 'datasets/stsbenchmark.tsv.gz' |
|
qqp_dataset_path = 'quora-IR-dataset' |
|
|
|
|
|
|
|
if not os.path.exists(sts_dataset_path): |
|
util.http_get('https://sbert.net/datasets/stsbenchmark.tsv.gz', sts_dataset_path) |
|
|
|
|
|
|
|
if not os.path.exists(qqp_dataset_path): |
|
logging.info("Dataset not found. Download") |
|
zip_save_path = 'quora-IR-dataset.zip' |
|
util.http_get(url='https://sbert.net/datasets/quora-IR-dataset.zip', path=zip_save_path) |
|
with ZipFile(zip_save_path, 'r') as zipIn: |
|
zipIn.extractall(qqp_dataset_path) |
|
|
|
|
|
cross_encoder_path = 'output/cross-encoder/stsb_indomain_'+model_name.replace("/", "-")+'-'+datetime.now().strftime("%Y-%m-%d_%H-%M-%S") |
|
bi_encoder_path = 'output/bi-encoder/qqp_cross_domain_'+model_name.replace("/", "-")+'-'+datetime.now().strftime("%Y-%m-%d_%H-%M-%S") |
|
|
|
|
|
|
|
logging.info("Loading cross-encoder model: {}".format(model_name)) |
|
|
|
cross_encoder = CrossEncoder(model_name, num_labels=1) |
|
|
|
|
|
|
|
logging.info("Loading bi-encoder model: {}".format(model_name)) |
|
|
|
|
|
word_embedding_model = models.Transformer(model_name, max_seq_length=max_seq_length) |
|
|
|
|
|
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), |
|
pooling_mode_mean_tokens=True, |
|
pooling_mode_cls_token=False, |
|
pooling_mode_max_tokens=False) |
|
|
|
bi_encoder = SentenceTransformer(modules=[word_embedding_model, pooling_model]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
logging.info("Step 1: Train cross-encoder: {} with STSbenchmark (source dataset)".format(model_name)) |
|
|
|
gold_samples = [] |
|
dev_samples = [] |
|
test_samples = [] |
|
|
|
with gzip.open(sts_dataset_path, 'rt', encoding='utf8') as fIn: |
|
reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE) |
|
for row in reader: |
|
score = float(row['score']) / 5.0 |
|
|
|
if row['split'] == 'dev': |
|
dev_samples.append(InputExample(texts=[row['sentence1'], row['sentence2']], label=score)) |
|
elif row['split'] == 'test': |
|
test_samples.append(InputExample(texts=[row['sentence1'], row['sentence2']], label=score)) |
|
else: |
|
|
|
gold_samples.append(InputExample(texts=[row['sentence1'], row['sentence2']], label=score)) |
|
gold_samples.append(InputExample(texts=[row['sentence2'], row['sentence1']], label=score)) |
|
|
|
|
|
|
|
train_dataloader = DataLoader(gold_samples, shuffle=True, batch_size=batch_size) |
|
|
|
|
|
|
|
evaluator = CECorrelationEvaluator.from_input_examples(dev_samples, name='sts-dev') |
|
|
|
|
|
warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) |
|
logging.info("Warmup-steps: {}".format(warmup_steps)) |
|
|
|
|
|
cross_encoder.fit(train_dataloader=train_dataloader, |
|
evaluator=evaluator, |
|
epochs=num_epochs, |
|
evaluation_steps=1000, |
|
warmup_steps=warmup_steps, |
|
output_path=cross_encoder_path) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
logging.info("Step 2: Label QQP (target dataset) with cross-encoder: {}".format(model_name)) |
|
|
|
cross_encoder = CrossEncoder(cross_encoder_path) |
|
|
|
silver_data = [] |
|
|
|
with open(os.path.join(qqp_dataset_path, "classification/train_pairs.tsv"), encoding='utf8') as fIn: |
|
reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE) |
|
for row in reader: |
|
if row['is_duplicate'] == '1': |
|
silver_data.append([row['question1'], row['question2']]) |
|
|
|
silver_scores = cross_encoder.predict(silver_data) |
|
|
|
|
|
assert all(0.0 <= score <= 1.0 for score in silver_scores) |
|
|
|
binary_silver_scores = [1 if score >= 0.5 else 0 for score in silver_scores] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
logging.info("Step 3: Train bi-encoder: {} over labeled QQP (target dataset)".format(model_name)) |
|
|
|
|
|
logging.info("Loading BERT labeled QQP dataset") |
|
qqp_train_data = list(InputExample(texts=[data[0], data[1]], label=score) for (data, score) in zip(silver_data, binary_silver_scores)) |
|
|
|
|
|
train_dataloader = DataLoader(qqp_train_data, shuffle=True, batch_size=batch_size) |
|
train_loss = losses.MultipleNegativesRankingLoss(bi_encoder) |
|
|
|
|
|
|
|
|
|
|
|
logging.info("Read QQP dev dataset") |
|
|
|
dev_sentences1 = [] |
|
dev_sentences2 = [] |
|
dev_labels = [] |
|
|
|
with open(os.path.join(qqp_dataset_path, "classification/dev_pairs.tsv"), encoding='utf8') as fIn: |
|
reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE) |
|
for row in reader: |
|
dev_sentences1.append(row['question1']) |
|
dev_sentences2.append(row['question2']) |
|
dev_labels.append(int(row['is_duplicate'])) |
|
|
|
evaluator = BinaryClassificationEvaluator(dev_sentences1, dev_sentences2, dev_labels) |
|
|
|
|
|
warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) |
|
logging.info("Warmup-steps: {}".format(warmup_steps)) |
|
|
|
|
|
bi_encoder.fit(train_objectives=[(train_dataloader, train_loss)], |
|
evaluator=evaluator, |
|
epochs=num_epochs, |
|
evaluation_steps=1000, |
|
warmup_steps=warmup_steps, |
|
output_path=bi_encoder_path |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bi_encoder = SentenceTransformer(bi_encoder_path) |
|
|
|
logging.info("Read QQP test dataset") |
|
test_sentences1 = [] |
|
test_sentences2 = [] |
|
test_labels = [] |
|
|
|
with open(os.path.join(qqp_dataset_path, "classification/test_pairs.tsv"), encoding='utf8') as fIn: |
|
reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE) |
|
for row in reader: |
|
test_sentences1.append(row['question1']) |
|
test_sentences2.append(row['question2']) |
|
test_labels.append(int(row['is_duplicate'])) |
|
|
|
evaluator = BinaryClassificationEvaluator(test_sentences1, test_sentences2, test_labels) |
|
bi_encoder.evaluate(evaluator) |
|
|