""" The script shows how to train Augmented SBERT (Domain-Transfer/Cross-Domain) strategy for STSb-QQP dataset. For our example below we consider STSb (source) and QQP (target) datasets respectively. Methodology: Three steps are followed for AugSBERT data-augmentation strategy with Domain Trasfer / Cross-Domain - 1. Cross-Encoder aka BERT is trained over STSb (source) dataset. 2. Cross-Encoder is used to label QQP training (target) dataset (Assume no labels/no annotations are provided). 3. Bi-encoder aka SBERT is trained over the labeled QQP (target) dataset. Citation: https://arxiv.org/abs/2010.08240 Usage: python train_sts_qqp_crossdomain.py OR python train_sts_qqp_crossdomain.py pretrained_transformer_model_name """ from torch.utils.data import DataLoader from sentence_transformers import models, losses, util, LoggingHandler, SentenceTransformer from sentence_transformers.cross_encoder import CrossEncoder from sentence_transformers.cross_encoder.evaluation import CECorrelationEvaluator from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator, BinaryClassificationEvaluator from sentence_transformers.readers import InputExample from datetime import datetime from zipfile import ZipFile import logging import csv import sys import torch import math import gzip import os #### Just some code to print debug information to stdout logging.basicConfig(format='%(asctime)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=logging.INFO, handlers=[LoggingHandler()]) #### /print debug information to stdout #You can specify any huggingface/transformers pre-trained model here, for example, bert-base-uncased, roberta-base, xlm-roberta-base model_name = sys.argv[1] if len(sys.argv) > 1 else 'bert-base-uncased' batch_size = 16 num_epochs = 1 max_seq_length = 128 use_cuda = torch.cuda.is_available() ###### Read Datasets ###### sts_dataset_path = 'datasets/stsbenchmark.tsv.gz' qqp_dataset_path = 'quora-IR-dataset' # Check if the STSb dataset exsist. If not, download and extract it if not os.path.exists(sts_dataset_path): util.http_get('https://sbert.net/datasets/stsbenchmark.tsv.gz', sts_dataset_path) # Check if the QQP dataset exists. If not, download and extract if not os.path.exists(qqp_dataset_path): logging.info("Dataset not found. Download") zip_save_path = 'quora-IR-dataset.zip' util.http_get(url='https://sbert.net/datasets/quora-IR-dataset.zip', path=zip_save_path) with ZipFile(zip_save_path, 'r') as zipIn: zipIn.extractall(qqp_dataset_path) cross_encoder_path = 'output/cross-encoder/stsb_indomain_'+model_name.replace("/", "-")+'-'+datetime.now().strftime("%Y-%m-%d_%H-%M-%S") bi_encoder_path = 'output/bi-encoder/qqp_cross_domain_'+model_name.replace("/", "-")+'-'+datetime.now().strftime("%Y-%m-%d_%H-%M-%S") ###### Cross-encoder (simpletransformers) ###### logging.info("Loading cross-encoder model: {}".format(model_name)) # Use Huggingface/transformers model (like BERT, RoBERTa, XLNet, XLM-R) for cross-encoder model cross_encoder = CrossEncoder(model_name, num_labels=1) ###### Bi-encoder (sentence-transformers) ###### logging.info("Loading bi-encoder model: {}".format(model_name)) # Use Huggingface/transformers model (like BERT, RoBERTa, XLNet, XLM-R) for mapping tokens to embeddings word_embedding_model = models.Transformer(model_name, max_seq_length=max_seq_length) # Apply mean pooling to get one fixed sized sentence vector pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), pooling_mode_mean_tokens=True, pooling_mode_cls_token=False, pooling_mode_max_tokens=False) bi_encoder = SentenceTransformer(modules=[word_embedding_model, pooling_model]) ##################################################### # # Step 1: Train cross-encoder model with STSbenchmark # ##################################################### logging.info("Step 1: Train cross-encoder: {} with STSbenchmark (source dataset)".format(model_name)) gold_samples = [] dev_samples = [] test_samples = [] with gzip.open(sts_dataset_path, 'rt', encoding='utf8') as fIn: reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE) for row in reader: score = float(row['score']) / 5.0 # Normalize score to range 0 ... 1 if row['split'] == 'dev': dev_samples.append(InputExample(texts=[row['sentence1'], row['sentence2']], label=score)) elif row['split'] == 'test': test_samples.append(InputExample(texts=[row['sentence1'], row['sentence2']], label=score)) else: #As we want to get symmetric scores, i.e. CrossEncoder(A,B) = CrossEncoder(B,A), we pass both combinations to the train set gold_samples.append(InputExample(texts=[row['sentence1'], row['sentence2']], label=score)) gold_samples.append(InputExample(texts=[row['sentence2'], row['sentence1']], label=score)) # We wrap gold_samples (which is a List[InputExample]) into a pytorch DataLoader train_dataloader = DataLoader(gold_samples, shuffle=True, batch_size=batch_size) # We add an evaluator, which evaluates the performance during training evaluator = CECorrelationEvaluator.from_input_examples(dev_samples, name='sts-dev') # Configure the training warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) #10% of train data for warm-up logging.info("Warmup-steps: {}".format(warmup_steps)) # Train the cross-encoder model cross_encoder.fit(train_dataloader=train_dataloader, evaluator=evaluator, epochs=num_epochs, evaluation_steps=1000, warmup_steps=warmup_steps, output_path=cross_encoder_path) ################################################################## # # Step 2: Label QQP train dataset using cross-encoder (BERT) model # ################################################################## logging.info("Step 2: Label QQP (target dataset) with cross-encoder: {}".format(model_name)) cross_encoder = CrossEncoder(cross_encoder_path) silver_data = [] with open(os.path.join(qqp_dataset_path, "classification/train_pairs.tsv"), encoding='utf8') as fIn: reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE) for row in reader: if row['is_duplicate'] == '1': silver_data.append([row['question1'], row['question2']]) silver_scores = cross_encoder.predict(silver_data) # All model predictions should be between [0,1] assert all(0.0 <= score <= 1.0 for score in silver_scores) binary_silver_scores = [1 if score >= 0.5 else 0 for score in silver_scores] ########################################################################### # # Step 3: Train bi-encoder (SBERT) model with QQP dataset - Augmented SBERT # ########################################################################### logging.info("Step 3: Train bi-encoder: {} over labeled QQP (target dataset)".format(model_name)) # Convert the dataset to a DataLoader ready for training logging.info("Loading BERT labeled QQP dataset") qqp_train_data = list(InputExample(texts=[data[0], data[1]], label=score) for (data, score) in zip(silver_data, binary_silver_scores)) train_dataloader = DataLoader(qqp_train_data, shuffle=True, batch_size=batch_size) train_loss = losses.MultipleNegativesRankingLoss(bi_encoder) ###### Classification ###### # Given (quesiton1, question2), is this a duplicate or not? # The evaluator will compute the embeddings for both questions and then compute # a cosine similarity. If the similarity is above a threshold, we have a duplicate. logging.info("Read QQP dev dataset") dev_sentences1 = [] dev_sentences2 = [] dev_labels = [] with open(os.path.join(qqp_dataset_path, "classification/dev_pairs.tsv"), encoding='utf8') as fIn: reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE) for row in reader: dev_sentences1.append(row['question1']) dev_sentences2.append(row['question2']) dev_labels.append(int(row['is_duplicate'])) evaluator = BinaryClassificationEvaluator(dev_sentences1, dev_sentences2, dev_labels) # Configure the training. warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) #10% of train data for warm-up logging.info("Warmup-steps: {}".format(warmup_steps)) # Train the bi-encoder model bi_encoder.fit(train_objectives=[(train_dataloader, train_loss)], evaluator=evaluator, epochs=num_epochs, evaluation_steps=1000, warmup_steps=warmup_steps, output_path=bi_encoder_path ) ############################################################### # # Evaluate Augmented SBERT performance on QQP benchmark dataset # ############################################################### # Loading the augmented sbert model bi_encoder = SentenceTransformer(bi_encoder_path) logging.info("Read QQP test dataset") test_sentences1 = [] test_sentences2 = [] test_labels = [] with open(os.path.join(qqp_dataset_path, "classification/test_pairs.tsv"), encoding='utf8') as fIn: reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE) for row in reader: test_sentences1.append(row['question1']) test_sentences2.append(row['question2']) test_labels.append(int(row['is_duplicate'])) evaluator = BinaryClassificationEvaluator(test_sentences1, test_sentences2, test_labels) bi_encoder.evaluate(evaluator)