ML for 3D Course documentation
Run via API
Run via API
To run via API, instead of duplicating the LGM-tiny space, duplicate the LGM-tiny-api space. This contains the following app.py
.
import gradio as gr
from gradio_client import Client, file
def run(image_url):
client = Client("dylanebert/LGM-tiny")
image = file(image_url)
result = client.predict(image, api_name="/predict")
return result
demo = gr.Interface(
fn=run,
title="LGM Tiny API",
description="An API wrapper for [LGM Tiny](https://huggingface.co/spaces/dylanebert/LGM-tiny). Intended as a resource for the [ML for 3D Course](https://huggingface.co/learn/ml-for-3d-course).",
inputs=gr.Textbox(label="Image URL", placeholder="Enter image URL, e.g. https://huggingface.co/datasets/dylanebert/iso3d/resolve/main/jpg@512/a_cat_statue.jpg"),
outputs=gr.Model3D(),
examples=[
"https://huggingface.co/datasets/dylanebert/iso3d/resolve/main/jpg@512/a_cat_statue.jpg"
],
allow_duplication=True,
)
demo.queue().launch()
This will work on CPU, but relies on the original LGM-tiny, instead of your custom model. However, is your focus is on UI/UX or downstream tasks, this may be acceptable.
< > Update on GitHub