text_shortening_model_v6
This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.5555
- Rouge1: 0.5993
- Rouge2: 0.3696
- Rougel: 0.551
- Rougelsum: 0.5503
- Bert precision: 0.8968
- Bert recall: 0.9029
- Average word count: 11.2357
- Max word count: 17
- Min word count: 7
- Average token count: 16.4143
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bert precision | Bert recall | Average word count | Max word count | Min word count | Average token count |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.2879 | 1.0 | 4 | 1.7189 | 0.5385 | 0.3175 | 0.4882 | 0.4875 | 0.8762 | 0.886 | 11.8071 | 18 | 5 | 17.1429 |
1.1303 | 2.0 | 8 | 1.6107 | 0.5599 | 0.337 | 0.5115 | 0.5117 | 0.8853 | 0.8916 | 11.2071 | 18 | 4 | 16.3071 |
1.0984 | 3.0 | 12 | 1.5545 | 0.5828 | 0.354 | 0.5254 | 0.5252 | 0.8885 | 0.8985 | 11.5286 | 17 | 4 | 16.5714 |
1.052 | 4.0 | 16 | 1.4943 | 0.5841 | 0.3631 | 0.5384 | 0.5372 | 0.8917 | 0.9004 | 11.3857 | 17 | 5 | 16.6143 |
0.9922 | 5.0 | 20 | 1.4517 | 0.5869 | 0.3671 | 0.5437 | 0.5432 | 0.8912 | 0.9011 | 11.5429 | 17 | 5 | 16.7929 |
0.9524 | 6.0 | 24 | 1.4308 | 0.5807 | 0.3571 | 0.5332 | 0.5333 | 0.8883 | 0.8994 | 11.6857 | 17 | 5 | 17.0357 |
0.9008 | 7.0 | 28 | 1.4152 | 0.5859 | 0.3585 | 0.5333 | 0.5319 | 0.8885 | 0.8974 | 11.4857 | 17 | 5 | 16.7786 |
0.8787 | 8.0 | 32 | 1.4089 | 0.5868 | 0.3592 | 0.5366 | 0.5363 | 0.8901 | 0.8991 | 11.4071 | 17 | 5 | 16.8071 |
0.857 | 9.0 | 36 | 1.4031 | 0.5974 | 0.3747 | 0.5496 | 0.5494 | 0.892 | 0.9015 | 11.5214 | 17 | 5 | 16.95 |
0.8122 | 10.0 | 40 | 1.3961 | 0.5965 | 0.3716 | 0.5487 | 0.5484 | 0.8917 | 0.9031 | 11.7071 | 17 | 6 | 17.1214 |
0.7943 | 11.0 | 44 | 1.3922 | 0.6068 | 0.3774 | 0.5572 | 0.5566 | 0.8947 | 0.9058 | 11.5929 | 17 | 6 | 16.9857 |
0.7632 | 12.0 | 48 | 1.3949 | 0.6011 | 0.371 | 0.55 | 0.549 | 0.8944 | 0.9039 | 11.4214 | 16 | 5 | 16.9 |
0.7464 | 13.0 | 52 | 1.3949 | 0.6007 | 0.3757 | 0.5506 | 0.5492 | 0.8938 | 0.9046 | 11.4357 | 16 | 5 | 16.8714 |
0.7235 | 14.0 | 56 | 1.3957 | 0.6113 | 0.3814 | 0.5609 | 0.5601 | 0.8965 | 0.9078 | 11.5429 | 16 | 6 | 16.8714 |
0.7293 | 15.0 | 60 | 1.3988 | 0.6102 | 0.3809 | 0.5615 | 0.56 | 0.8948 | 0.9079 | 11.7 | 16 | 6 | 17.15 |
0.7188 | 16.0 | 64 | 1.3954 | 0.6094 | 0.381 | 0.5603 | 0.5588 | 0.8965 | 0.9062 | 11.35 | 16 | 6 | 16.8071 |
0.7028 | 17.0 | 68 | 1.3969 | 0.6068 | 0.3846 | 0.5581 | 0.5568 | 0.896 | 0.9052 | 11.2571 | 16 | 6 | 16.65 |
0.6792 | 18.0 | 72 | 1.4056 | 0.6007 | 0.3777 | 0.5519 | 0.5508 | 0.895 | 0.9048 | 11.3214 | 16 | 6 | 16.6214 |
0.671 | 19.0 | 76 | 1.4142 | 0.6043 | 0.3779 | 0.5549 | 0.5541 | 0.8954 | 0.9046 | 11.2429 | 15 | 6 | 16.5429 |
0.6644 | 20.0 | 80 | 1.4202 | 0.6009 | 0.3767 | 0.5502 | 0.5496 | 0.8955 | 0.9028 | 11.1643 | 16 | 6 | 16.3643 |
0.6526 | 21.0 | 84 | 1.4256 | 0.6023 | 0.374 | 0.5485 | 0.5485 | 0.8958 | 0.9032 | 11.1857 | 17 | 6 | 16.35 |
0.6311 | 22.0 | 88 | 1.4356 | 0.6059 | 0.3768 | 0.5492 | 0.5488 | 0.8932 | 0.9042 | 11.5 | 17 | 6 | 16.7214 |
0.6448 | 23.0 | 92 | 1.4432 | 0.6071 | 0.3768 | 0.5519 | 0.5518 | 0.8935 | 0.9044 | 11.5357 | 17 | 6 | 16.7643 |
0.6344 | 24.0 | 96 | 1.4457 | 0.6088 | 0.3823 | 0.5583 | 0.5576 | 0.8985 | 0.9052 | 11.1214 | 16 | 6 | 16.3071 |
0.6299 | 25.0 | 100 | 1.4522 | 0.6049 | 0.3709 | 0.5488 | 0.5484 | 0.8976 | 0.9017 | 10.9 | 16 | 6 | 15.9643 |
0.6193 | 26.0 | 104 | 1.4616 | 0.6045 | 0.3701 | 0.5499 | 0.5495 | 0.8959 | 0.9032 | 11.1714 | 16 | 6 | 16.35 |
0.6247 | 27.0 | 108 | 1.4704 | 0.5993 | 0.3719 | 0.5515 | 0.5503 | 0.8949 | 0.9041 | 11.3429 | 17 | 7 | 16.6286 |
0.6062 | 28.0 | 112 | 1.4760 | 0.6017 | 0.3702 | 0.5537 | 0.5526 | 0.8949 | 0.903 | 11.2929 | 17 | 6 | 16.5143 |
0.5921 | 29.0 | 116 | 1.4816 | 0.5994 | 0.3734 | 0.5528 | 0.552 | 0.8959 | 0.9025 | 11.1429 | 17 | 6 | 16.3429 |
0.5859 | 30.0 | 120 | 1.4887 | 0.6027 | 0.3724 | 0.5523 | 0.5518 | 0.8956 | 0.9034 | 11.3357 | 17 | 7 | 16.5143 |
0.5911 | 31.0 | 124 | 1.4958 | 0.6065 | 0.3757 | 0.5523 | 0.5519 | 0.8971 | 0.9033 | 11.1857 | 17 | 6 | 16.3643 |
0.5936 | 32.0 | 128 | 1.5029 | 0.6008 | 0.3745 | 0.5508 | 0.5508 | 0.8973 | 0.9015 | 10.9714 | 16 | 6 | 16.1 |
0.584 | 33.0 | 132 | 1.5101 | 0.6087 | 0.3801 | 0.5582 | 0.5583 | 0.8969 | 0.9038 | 11.2214 | 16 | 6 | 16.4071 |
0.5741 | 34.0 | 136 | 1.5157 | 0.6054 | 0.3814 | 0.5575 | 0.5576 | 0.8961 | 0.9042 | 11.2643 | 16 | 7 | 16.4786 |
0.5793 | 35.0 | 140 | 1.5202 | 0.6079 | 0.3866 | 0.5621 | 0.5622 | 0.8968 | 0.9057 | 11.3214 | 16 | 7 | 16.5714 |
0.5803 | 36.0 | 144 | 1.5221 | 0.6081 | 0.3824 | 0.5601 | 0.5602 | 0.8966 | 0.9053 | 11.3357 | 16 | 7 | 16.6214 |
0.5719 | 37.0 | 148 | 1.5235 | 0.6025 | 0.3802 | 0.555 | 0.5542 | 0.898 | 0.9035 | 11.1357 | 16 | 7 | 16.3214 |
0.5567 | 38.0 | 152 | 1.5238 | 0.5987 | 0.3763 | 0.5524 | 0.5517 | 0.8974 | 0.9024 | 11.0357 | 16 | 7 | 16.2143 |
0.5535 | 39.0 | 156 | 1.5264 | 0.6023 | 0.3746 | 0.5547 | 0.5539 | 0.8977 | 0.9035 | 11.1357 | 16 | 7 | 16.3 |
0.5507 | 40.0 | 160 | 1.5315 | 0.6039 | 0.3757 | 0.5565 | 0.5559 | 0.8979 | 0.9045 | 11.2071 | 16 | 7 | 16.4143 |
0.5568 | 41.0 | 164 | 1.5389 | 0.6078 | 0.3819 | 0.5589 | 0.5579 | 0.8973 | 0.9045 | 11.4 | 17 | 7 | 16.5571 |
0.5659 | 42.0 | 168 | 1.5444 | 0.6037 | 0.3788 | 0.5567 | 0.5558 | 0.8959 | 0.9036 | 11.4286 | 17 | 7 | 16.5714 |
0.561 | 43.0 | 172 | 1.5475 | 0.5965 | 0.372 | 0.5494 | 0.548 | 0.8958 | 0.9024 | 11.3357 | 17 | 7 | 16.4929 |
0.5535 | 44.0 | 176 | 1.5493 | 0.597 | 0.3703 | 0.5495 | 0.5485 | 0.8967 | 0.9025 | 11.2214 | 17 | 7 | 16.3786 |
0.5542 | 45.0 | 180 | 1.5507 | 0.6001 | 0.3706 | 0.5529 | 0.5526 | 0.897 | 0.9034 | 11.2429 | 17 | 7 | 16.4214 |
0.542 | 46.0 | 184 | 1.5527 | 0.6001 | 0.3706 | 0.5529 | 0.5526 | 0.897 | 0.9034 | 11.2429 | 17 | 7 | 16.4214 |
0.5466 | 47.0 | 188 | 1.5539 | 0.6003 | 0.3702 | 0.5529 | 0.5526 | 0.8968 | 0.9033 | 11.2571 | 17 | 7 | 16.4357 |
0.5478 | 48.0 | 192 | 1.5550 | 0.5997 | 0.3699 | 0.5515 | 0.5508 | 0.8969 | 0.9029 | 11.2143 | 17 | 7 | 16.3857 |
0.5429 | 49.0 | 196 | 1.5552 | 0.5993 | 0.3696 | 0.551 | 0.5503 | 0.8968 | 0.9029 | 11.2357 | 17 | 7 | 16.4143 |
0.5443 | 50.0 | 200 | 1.5555 | 0.5993 | 0.3696 | 0.551 | 0.5503 | 0.8968 | 0.9029 | 11.2357 | 17 | 7 | 16.4143 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for ldos/text_shortening_model_v6
Base model
google-t5/t5-small