Sakura-SOLRCA-Math-Instruct-DPO-v1

Model Details

Model Developers Kyujin Han (kyujinpy)

Method
Using DPO method.
With Intel/orca_dpo_pairs and argilla/distilabel-math-preference-dpo.

I shared the merge version kyujinpy/orca_math_dpo.

I will share the information about my model. (training and code)
Please see: ⭐Sakura-SOLAR.

Model Benchmark

Open leaderboard

  • Follow up as link.
Model Average ARC HellaSwag MMLU TruthfulQA Winogrande GSM8K
Sakura-SOLRCA-Math-Instruct-DPO-v2 74.17 71.25 88.52 66.13 72.16 83.03 63.91
Sakura-SOLRCA-Math-Instruct-DPO-v1 74.13 71.25 88.48 66.21 72.12 82.87 63.84
Sakura-SOLRCA-Instruct-DPO 74.05 71.16 88.49 66.17 72.10 82.95 63.46
Sakura-SOLAR-Instruct-DPO-v2 74.14 70.90 88.41 66.48 71.86 83.43 63.76
kyujinpy/Sakura-SOLAR-Instruct 74.40 70.99 88.42 66.33 71.79 83.66 65.20

Implementation Code

### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

repo = "kyujinpy/Sakura-SOLRCA-Math-Instruct-DPO-v1"
OpenOrca = AutoModelForCausalLM.from_pretrained(
        repo,
        return_dict=True,
        torch_dtype=torch.float16,
        device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 74.13
AI2 Reasoning Challenge (25-Shot) 71.25
HellaSwag (10-Shot) 88.48
MMLU (5-Shot) 66.21
TruthfulQA (0-shot) 72.12
Winogrande (5-shot) 82.87
GSM8k (5-shot) 63.84
Downloads last month
3,539
Safetensors
Model size
10.7B params
Tensor type
FP16
Β·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for kyujinpy/Sakura-SOLRCA-Math-Instruct-DPO-v1

Quantizations
4 models

Datasets used to train kyujinpy/Sakura-SOLRCA-Math-Instruct-DPO-v1

Spaces using kyujinpy/Sakura-SOLRCA-Math-Instruct-DPO-v1 24

Collection including kyujinpy/Sakura-SOLRCA-Math-Instruct-DPO-v1

Evaluation results