DACN2 / README.md
kylePham's picture
Training complete
71a193d verified
---
license: mit
base_model: vinai/phobert-base
tags:
- generated_from_trainer
model-index:
- name: DACN2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# DACN2
This model is a fine-tuned version of [vinai/phobert-base](https://huggingface.co/vinai/phobert-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.1474
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| No log | 1.0 | 347 | 1.1891 |
| 1.3935 | 2.0 | 694 | 1.1047 |
| 0.8907 | 3.0 | 1041 | 1.0154 |
| 0.8907 | 4.0 | 1388 | 1.0854 |
| 0.593 | 5.0 | 1735 | 1.3185 |
| 0.3795 | 6.0 | 2082 | 1.5470 |
| 0.3795 | 7.0 | 2429 | 1.4931 |
| 0.2399 | 8.0 | 2776 | 1.6889 |
| 0.1596 | 9.0 | 3123 | 1.8808 |
| 0.1596 | 10.0 | 3470 | 2.0850 |
| 0.1084 | 11.0 | 3817 | 2.3343 |
| 0.0806 | 12.0 | 4164 | 2.5696 |
| 0.0472 | 13.0 | 4511 | 2.6458 |
| 0.0472 | 14.0 | 4858 | 2.7680 |
| 0.0485 | 15.0 | 5205 | 2.8165 |
| 0.0417 | 16.0 | 5552 | 2.8918 |
| 0.0417 | 17.0 | 5899 | 3.0412 |
| 0.0233 | 18.0 | 6246 | 3.0186 |
| 0.0193 | 19.0 | 6593 | 3.0639 |
| 0.0193 | 20.0 | 6940 | 3.0657 |
| 0.0191 | 21.0 | 7287 | 2.9095 |
| 0.0146 | 22.0 | 7634 | 3.0045 |
| 0.0146 | 23.0 | 7981 | 3.2984 |
| 0.013 | 24.0 | 8328 | 3.3791 |
| 0.0131 | 25.0 | 8675 | 3.2946 |
| 0.0101 | 26.0 | 9022 | 3.2814 |
| 0.0101 | 27.0 | 9369 | 3.3177 |
| 0.0114 | 28.0 | 9716 | 3.2819 |
| 0.0046 | 29.0 | 10063 | 3.2945 |
| 0.0046 | 30.0 | 10410 | 3.3072 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.5.1+cu121
- Datasets 2.16.1
- Tokenizers 0.15.2