PyTorch
mistral
Krutrim
language-model
Krutrim-2-instruct / README.md
krutrim-admin's picture
Update README.md
43cacce verified
|
raw
history blame
12.6 kB
metadata
language:
  - en
  - hi
  - bn
  - mr
  - te
  - ta
  - kn
  - ml
  - gu
  - as
  - pa
license: unknown
tags:
  - Krutrim
  - language-model
widget:
  - text: Category-wise evaluation results
    output:
      url: images/cumulative_score_category.png
  - text: Language-wise evaluation results
    output:
      url: images/cumulative_score_langauge.png

Krutrim-2

Model Overview

Krutrim-2 is a 12B parameter language model developed by the OLA Krutrim team. It is built on the Mistral-NeMo 12B architecture and trained across various domains, including web data, code, math, Indic languages, Indian context data, synthetic data, and books. Following pretraining, the model was finetuned on diverse data covering a wide range of tasks, including knowledge recall, math, reasoning, coding, safety & non-compliance, instruction following and creative writing.

After fine-tuning, the model underwent Direct Preference Optimization (DPO) to enhance alignment across multiple aspects. DPO was applied to improve response helpfulness, safety, and compliance, making the model more robust against harmful prompts, reducing biases, and improving factual consistency.

Key Features

  • 12B parameter dense transformer model leading to better generalization compared to Krutrim-1 7B;
  • Supports context up to 128K tokens making it suitable for long multi-turn conversations, long-form generations, document translations and others;
  • Retains the original performance of MN-12B on most En benchmarks with x3.5 improvement on HumanEval coding task;
  • Natively multilingual delivering best-in-class performance on Indic benchmarks;
  • Matches or exceeds performance of models much larger (x6) on multilingual Indic generation tasks including creative writing, summarization, and translation;
  • Stronger Indian cultural context relevance - scored the highest in manual evaluation with multiple models in an anonymised setting;
  • Delivers top-3 performance on 5 (out of 7) tasks in BharatBench among much larger open source and commercial models.
  • Available in both pre-trained and instruction-tuned versions

Model Developer

  • OLA Krutrim Team

Model Dates

  • Krutrim-2 was trained between Dec 2024 and Jan 2025.

Release History

Model Name Release Date Release Note Reference
Krutrim-2-Base 2024-01-31 Continually Pre-trained on MN12B base Here
Krutrim-2-Instruct 2024-01-31 Finetuned and DPOed version of Krutrim-2-Base Here

Data Freshness

  • The dataset includes information up to April 2024.

Model Architecture

  • Layers: 40
  • Hidden Dimension: 5,120
  • Head Dimension: 128
  • Hidden Dimension: 14,336
  • Activation Function: SiLU
  • Number of Heads: 32
  • Number of KV-Heads: 8 (GQA)
  • Rotary Embeddings: Theta = 1M
  • Vocabulary Size: 131072 (2^17)
  • Architecture Type: Transformer Decoder (Auto-regressive Language Model)

Evaluation Results

English/Code/Math Benchmarks

Benchmark Krutrim-1 7B MN-12B-Instruct Krutrim-2 12B llama-3.3-70B Gemini-1.5 Flash GPT-4o
Hellaswag (0-shot) - Accuracy 0.74 0.82 0.83 0.95 0.87 (10-shot) 0.95 (10-shot)
Winogrande (0-shot) - Accuracy 0.67 0.74 0.77 0.85 (5-shot) - 0.88 (5-shot)
OpenBookQA (0-shot) - Accuracy 0.45 0.46 0.49 - - -
CommonSenseQA (0-shot) - Accuracy 0.74 0.70 0.74 - - 0.85
TruthfulQA (0-shot) - Accuracy 0.49 0.54 0.59 - - 0.59
MMLU (5-shot) - Accuracy 0.47 0.68 0.63 0.82 0.79 0.86
TriviaQA (5-shot) - EM 0.44 0.72 0.62 - - -
NaturalQuestions (5-shot) - EM 0.15 0.28 0.26 - - -
GSM8K (0-shot) - EM 0.07 0.74 0.71 0.93 (8-shot, CoT) 0.86 (11-shot) 0.89
ARC_Challenge (0-shot) - Accuracy 0.48 0.59 0.60 0.93 (25-shot) - 0.50
ARC_Easy (0-shot) - Accuracy 0.73 0.80 0.82 - - -
HumanEval - Pass@10 0.00 0.23 0.80 0.88 0.74 (0-shot) 0.90
IF_Eval (0-shot) - Accuracy 0.16 - 0.56 0.92 - 0.84

Indic Benchmarks

Benchmark Metric Krutrim-1 7B MN-12B-Instruct Krutrim-2 12B llama-3.1-8B llama-3.3-70B Gemini-1.5 Flash GPT-4o
IndicSentiment (0-shot) Accuracy 0.65 0.70 0.95 0.05 0.96 0.99 0.98
IndicCOPA (0-shot) Accuracy 0.51 0.58 0.80 0.48 0.83 0.88 0.91
IndicXParaphrase (0-shot) Accuracy 0.67 0.74 0.88 0.75 0.87 0.89 TBD
IndicXNLI (0-shot) Accuracy 0.47 0.54 0.55 0.00 TBD TBD 0.67?
IndicQA (0-shot) Bert Score 0.90 0.90 0.91 TBD TBD TBD TBD
CrossSumIN (1-shot) chrF++ 0.04 0.17 0.21 0.21 0.26 0.24 TBD
FloresIN Translation xx-en (1-shot) chrF++ 0.54 0.50 0.58 0.54 0.60 0.62 0.63
FloresIN Translation en-xx (1-shot) chrF++ 0.41 0.34 0.48 0.37 0.46 0.47 0.48
IN22 Translation xx-en (0-shot) chrF++ 0.50 0.48 0.57 0.49 0.58 TBD 0.54?
IN22 Translation en-xx (0-shot) chrF++ 0.36 0.33 0.45 0.32 0.42 TBD 0.43?

BharatBench

The existing Indic benchmarks are not natively in Indian languages, rather, they are translations of existing En benchmarks. They do not sufficiently capture the linguistic nuances of Indian languages and aspects of Indian culture. Towards that Krutrim released BharatBench - a natively Indic benchmark that encompasses the linguistic and cultural diversity of the Indic region, ensuring that the evaluations are relevant and representative of real-world use cases in India.

Benchmark Metric Krutrim-1 7B MN-12B-Instruct Krutrim-2 12B llama-3.1-8B-Instruct llama-3.1-70B-Instruct Gemma-2-9B-Instruct Gemma-2-27B-Instruct GPT-4o
Indian Cultural Context (0-shot) Bert Score 0.86 0.56 0.88 0.87 0.88 0.87 0.87 0.89
Grammar Correction (5-shot) Bert Score 0.96 0.94 0.98 0.95 0.98 0.96 0.96 0.97
Multi Turn (0-shot) Bert Score 0.88 0.87 0.91 0.88 0.90 0.89 0.89 0.92
Multi Turn Comprehension (0-shot) Bert Score 0.90 0.89 0.92 0.92 0.93 0.91 0.91 0.94
Multi Turn Translation (0-shot) Bert Score 0.85 0.87 0.92 0.89 0.91 0.90 0.91 0.92
Text Classification (5-shot) Accuracy 0.61 0.71 0.76 0.72 0.88 0.82 0.86 0.89
Named Entity Recognition (5-shot) Accuracy 0.31 0.51 0.53 0.55 0.61 0.61 0.65 0.65

Qualitative Results

Below are the results from manual evaluation of prompt-response pairs across languages and task categories. Scores are between 1-5 (higher the better). Model names were anonymised during the evaluation.

Usage

To use the model, you can load it with AutoModelForCausalLM as follows:

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

model_id = "krutrim-ai-labs/Krutrim-2-instruct"

# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)

# Add custom chat template
tokenizer.chat_template = """{% for message in messages %}{% if message['role'] == 'system' %}{{ '<|system|>\n' + message['content'] + '\n' }}{% elif message['role'] == 'user' %}{{ '<|user|>\n' + message['content'] + '\n' }}{% elif message['role'] == 'assistant' %}{% if not loop.last %}{{ '<|assistant|>\n' + message['content'] + eos_token + '\n' }}{% else %}{{ '<|assistant|>\n' + message['content'] + eos_token }}{% endif %}{% endif %}{% if loop.last and add_generation_prompt %}{{ '<|assistant|>\n' }}{% endif %}{% endfor %}"""

print(tokenizer.get_chat_template())

prompt_dict = [{"role":'system','content':"You are an AI assistant."},{"role":'user','content':"Who are you?"}]
prompt = tokenizer.apply_chat_template(prompt_dict, add_generation_prompt=True, tokenize=False)
inputs = tokenizer(prompt, return_tensors='pt')
inputs.pop("token_type_ids", None)

# Generate response
outputs = model.generate(
    **inputs,
    max_length=4096,
    temperature=0.5,
    top_k=50,
    top_p=0.9,
    repetition_penalty=1.2,
    num_return_sequences=1,
    do_sample=True,
    eos_token_id=2,
)

response_list = [tokenizer.decode(output).split(prompt)[1] for output in outputs]

Note: The provided chat template helps generate the best response by structuring conversations optimally for the model.

Limitations

The model was trained on a dataset that includes content from the internet, which may contain toxic language, biases, and unsafe content. As a result, the model may:

  • Amplify biases present in the training data
  • Generate toxic responses, especially when prompted with toxic inputs
  • Provide inaccurate, incomplete, or redundant answers
  • Generate responses in languages inconsistent with the prompt

Ethical Considerations

  • The model may produce biased or offensive outputs based on its training data.
  • Users should apply human oversight when using the model for decision-making in sensitive areas.
  • While safeguards have been implemented, the model may still generate socially undesirable text in certain contexts.