krshahvivek's picture
krshahvivek/distilbert-base-uncased-lora-text-classification
df847ed verified
---
library_name: peft
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-lora-text-classification
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-lora-text-classification
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1819
- Accuracy: {'accuracy': 0.897}
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:-------------------:|
| No log | 1.0 | 250 | 0.5093 | {'accuracy': 0.862} |
| 0.4169 | 2.0 | 500 | 0.5829 | {'accuracy': 0.849} |
| 0.4169 | 3.0 | 750 | 0.6257 | {'accuracy': 0.885} |
| 0.1958 | 4.0 | 1000 | 0.7867 | {'accuracy': 0.878} |
| 0.1958 | 5.0 | 1250 | 0.7045 | {'accuracy': 0.886} |
| 0.0879 | 6.0 | 1500 | 0.8638 | {'accuracy': 0.882} |
| 0.0879 | 7.0 | 1750 | 0.9795 | {'accuracy': 0.876} |
| 0.024 | 8.0 | 2000 | 1.2233 | {'accuracy': 0.886} |
| 0.024 | 9.0 | 2250 | 1.2044 | {'accuracy': 0.884} |
| 0.014 | 10.0 | 2500 | 1.1903 | {'accuracy': 0.88} |
| 0.014 | 11.0 | 2750 | 1.1673 | {'accuracy': 0.89} |
| 0.0136 | 12.0 | 3000 | 1.1105 | {'accuracy': 0.895} |
| 0.0136 | 13.0 | 3250 | 1.1652 | {'accuracy': 0.893} |
| 0.0005 | 14.0 | 3500 | 1.1656 | {'accuracy': 0.894} |
| 0.0005 | 15.0 | 3750 | 1.1819 | {'accuracy': 0.897} |
### Framework versions
- PEFT 0.14.0
- Transformers 4.48.3
- Pytorch 2.6.0+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0