asahi417's picture
Update README.md
1cdde27 verified
|
raw
history blame
2.9 kB
---
language: ja
tags:
- audio
- automatic-speech-recognition
license: apache-2.0
---
# Kotoba-Whisper: kotoba-whisper-v1.0 for Whisper cpp
This repository contains the model weights for [kotoba-tech/kotoba-whisper-v1.0](https://huggingface.co/kotoba-tech/kotoba-whisper-v1.0)
converted to [GGML](https://github.com/ggerganov/ggml) format. GGML is the weight format expected by C/C++ packages
such as [Whisper.cpp](https://github.com/ggerganov/whisper.cpp), for which we provide an example below.
## Usage
Kotoba-Whisper can be run with the [Whisper.cpp](https://github.com/ggerganov/whisper.cpp) package with the original
sequential long-form transcription algorithm.
Steps for getting started:
1. Clone the Whisper.cpp repository:
```
git clone https://github.com/ggerganov/whisper.cpp.git
cd whisper.cpp
```
2. Download the GGML weights for `kotoba-tech/kotoba-whisper-v1.0`:
```bash
wget https://huggingface.co/kotoba-tech/kotoba-whisper-v1.0-ggml/resolve/main/ggml-kotoba-whisper-v1.0.bin -P ./models
```
3. Run inference using the provided sample audio:
```bash
wget https://huggingface.co/kotoba-tech/kotoba-whisper-v1.0-ggml/resolve/main/sample_ja_speech.wav
make -j && ./main -m models/ggml-kotoba-whisper-v1.0.bin -f sample_ja_speech.wav --output-file transcription --output-json
```
Note that it runs only with 16-bit WAV files, so make sure to convert your input before running the tool. For example, you can use ffmpeg like this:
```
ffmpeg -i input.mp3 -ar 16000 -ac 1 -c:a pcm_s16le output.wav
```
### Benchmark
We measure the inference speed of different kotoba-whisper-v1.0 implementations with four different Japanese speech audio on MacBook Pro with the following spec:
- Apple M2 Pro
- 32GB
- 14-inch, 2023
- OS Sonoma Version 14.4.1 (23E224)
| audio file | audio duration (min)| [whisper.cpp](https://huggingface.co/kotoba-tech/kotoba-whisper-v1.0-ggml) (sec) | [faster-whisper](https://huggingface.co/kotoba-tech/kotoba-whisper-v1.0-faster) (sec)| [hf pipeline](https://huggingface.co/kotoba-tech/kotoba-whisper-v1.0) (sec)
|--------|------|-----|------|---|
|audio 1 | 50.3 | 581 | 2601 | |
|audio 2 | 5.6 | 41 | 73 | |
|audio 3 | 4.9 | 30 | 141 | |
|audio 4 | 5.6 | 35 | 126 | |
### Quantized Model
To use the quantized model, download the quantized GGML weights:
```bash
wget https://huggingface.co/kotoba-tech/kotoba-whisper-v1.0-ggml/resolve/main/ggml-kotoba-whisper-v1.0-q5_0.bin -P ./models
```
Run inference on the sample audio:
```bash
make -j && ./main -m models/ggml-kotoba-whisper-v1.0-q5_0.bin -f sample_ja_speech.wav --output-file transcription.quantized --output-json
```
Note that the benchmark results are almost identical to the raw non-quantized model weight.
## Model Details
For more information about the kotoba-whisper-v1.0, refer to the original [model card](https://huggingface.co/kotoba-tech/kotoba-whisper-v1.0).