File size: 2,582 Bytes
e24aa62
 
caf799c
 
 
 
fe8d75f
 
caf799c
fe8d75f
 
 
 
b239616
caf799c
 
e24aa62
 
 
 
 
 
fe8d75f
e24aa62
fe8d75f
 
e24aa62
b444903
caf799c
b444903
6bf0043
caf799c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bf0043
e24aa62
fe8d75f
e24aa62
fe8d75f
e24aa62
fe8d75f
 
 
e24aa62
caf799c
fe8d75f
 
 
 
 
 
e24aa62
fe8d75f
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
---
library_name: transformers
tags:
- stunting
- kesehatan
- anak
license: mit
datasets:
- kodetr/stunting-qa-2025
language:
- id
metrics:
- rouge
pipeline_tag: text-generation
base_model:
- meta-llama/Llama-3.1-8B-Instruct
---

### Model Description

<!-- Provide a longer summary of what this model is. -->

Konsultasi(Q&A) stunting pada anak

- **Developed by:** Tanwir
- **Language :** Indonesia

### Training
![image/webp](https://cdn-uploads.huggingface.co/production/uploads/65d6d2f8b06abf924b24349d/YoWso_UhiKhCW6blruH2w.webp)

### Information Result Training
```
      ***** train metrics *****
  epoch                    =     2.9987
  num_input_tokens_seen    =    1900976
  total_flos               = 79944066GF
  train_loss               =      0.872
  train_runtime            = 1:06:36.18
  train_samples_per_second =      5.737
  train_steps_per_second   =      0.358
```

### Evaluation

```
{
    "predict_bleu-4": 46.238530502486256,
    "predict_model_preparation_time": 0.0054,
    "predict_rouge-1": 50.236485540434444,
    "predict_rouge-2": 33.20428471604292,
    "predict_rouge-l": 46.93391739073541,
    "predict_runtime": 10532.8745,
    "predict_samples_per_second": 0.726,
    "predict_steps_per_second": 0.363
}
```

### Parameter

```
LlamaConfig {
  "architectures": [
    "LlamaForCausalLM"
  ],
  "attention_bias": false,
  "attention_dropout": 0.0,
  "bos_token_id": 128000,
  "eos_token_id": 128009,
  "head_dim": 128,
  "hidden_act": "silu",
  "hidden_size": 4096,
  "initializer_range": 0.02,
  "intermediate_size": 14336,
  "max_position_embeddings": 8192,
  "mlp_bias": false,
  "model_type": "llama",
  "num_attention_heads": 32,
  "num_hidden_layers": 32,
  "num_key_value_heads": 8,
  "pretraining_tp": 1,
  "rms_norm_eps": 1e-05,
  "rope_scaling": null,
  "rope_theta": 500000.0,
  "tie_word_embeddings": false,
  "torch_dtype": "bfloat16",
  "transformers_version": "4.51.3",
  "use_cache": true,
  "vocab_size": 128256
}
```


### Use with transformers

Pastikan untuk memperbarui instalasi transformer Anda melalui pip install --upgrade transformer.

```python
import torch
from transformers import pipeline

model_id = "kodetr/stunting-qa-v5"
pipe = pipeline(
    "text-generation",
    model=model_id,
    torch_dtype=torch.bfloat16,
    device_map="auto",
)

messages = [
    {"role": "system", "content": "Jelaskan definisi 1000 hari pertama kehidupan."},
    {"role": "user", "content": "Apa itu 1000 hari pertama kehidupan?"},
]
outputs = pipe(
    messages,
    max_new_tokens=256,
)
print(outputs[0]["generated_text"][-1])
```