File size: 2,582 Bytes
e24aa62 caf799c fe8d75f caf799c fe8d75f b239616 caf799c e24aa62 fe8d75f e24aa62 fe8d75f e24aa62 b444903 caf799c b444903 6bf0043 caf799c 6bf0043 e24aa62 fe8d75f e24aa62 fe8d75f e24aa62 fe8d75f e24aa62 caf799c fe8d75f e24aa62 fe8d75f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
---
library_name: transformers
tags:
- stunting
- kesehatan
- anak
license: mit
datasets:
- kodetr/stunting-qa-2025
language:
- id
metrics:
- rouge
pipeline_tag: text-generation
base_model:
- meta-llama/Llama-3.1-8B-Instruct
---
### Model Description
<!-- Provide a longer summary of what this model is. -->
Konsultasi(Q&A) stunting pada anak
- **Developed by:** Tanwir
- **Language :** Indonesia
### Training

### Information Result Training
```
***** train metrics *****
epoch = 2.9987
num_input_tokens_seen = 1900976
total_flos = 79944066GF
train_loss = 0.872
train_runtime = 1:06:36.18
train_samples_per_second = 5.737
train_steps_per_second = 0.358
```
### Evaluation
```
{
"predict_bleu-4": 46.238530502486256,
"predict_model_preparation_time": 0.0054,
"predict_rouge-1": 50.236485540434444,
"predict_rouge-2": 33.20428471604292,
"predict_rouge-l": 46.93391739073541,
"predict_runtime": 10532.8745,
"predict_samples_per_second": 0.726,
"predict_steps_per_second": 0.363
}
```
### Parameter
```
LlamaConfig {
"architectures": [
"LlamaForCausalLM"
],
"attention_bias": false,
"attention_dropout": 0.0,
"bos_token_id": 128000,
"eos_token_id": 128009,
"head_dim": 128,
"hidden_act": "silu",
"hidden_size": 4096,
"initializer_range": 0.02,
"intermediate_size": 14336,
"max_position_embeddings": 8192,
"mlp_bias": false,
"model_type": "llama",
"num_attention_heads": 32,
"num_hidden_layers": 32,
"num_key_value_heads": 8,
"pretraining_tp": 1,
"rms_norm_eps": 1e-05,
"rope_scaling": null,
"rope_theta": 500000.0,
"tie_word_embeddings": false,
"torch_dtype": "bfloat16",
"transformers_version": "4.51.3",
"use_cache": true,
"vocab_size": 128256
}
```
### Use with transformers
Pastikan untuk memperbarui instalasi transformer Anda melalui pip install --upgrade transformer.
```python
import torch
from transformers import pipeline
model_id = "kodetr/stunting-qa-v5"
pipe = pipeline(
"text-generation",
model=model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
)
messages = [
{"role": "system", "content": "Jelaskan definisi 1000 hari pertama kehidupan."},
{"role": "user", "content": "Apa itu 1000 hari pertama kehidupan?"},
]
outputs = pipe(
messages,
max_new_tokens=256,
)
print(outputs[0]["generated_text"][-1])
``` |