distilbert-multilabel-job-ablehnung_test9

This model is a fine-tuned version of distilbert-base-german-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0690
  • Accuracy: 0.1542
  • Precision: 0.0238
  • Recall: 0.1542
  • F1: 0.0412

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 800
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
4.1505 1.0 60 2.0690 0.1542 0.0238 0.1542 0.0412

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 2.14.4
  • Tokenizers 0.21.0
Downloads last month
15
Safetensors
Model size
67M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for kieltraining/distilbert-multilabel-classifier_test11

Finetuned
(8)
this model