|
To load this model, use the following code: |
|
```py |
|
from transformers import PreTrainedTokenizerFast, AutoModelForCausalLM, AutoConfig |
|
|
|
tokenizer = PreTrainedTokenizerFast.from_pretrained('kibrq/greedy-intersection') |
|
|
|
config = AutoConfig.from_pretrained('kibrq/greedy-intersection', trust_remote_code = True) |
|
config._from_tokenizer(freegroup_dimension, tokenizer) |
|
|
|
model = AutoModelForCausalLM.from_config(config, trust_remote_code = True) |
|
``` |
|
|
|
To generate words from the intersection, use this code: |
|
|
|
```py |
|
from freegroup.sampling import free_group_bounded |
|
from freegroup.tools import is_from_singleton_normal_closure |
|
|
|
from freegroup.commutators import to_tokenizer, from_tokenizer |
|
|
|
from itertools import islice |
|
|
|
batch_size = 20 |
|
prefix_length = 15 |
|
|
|
generation_config = dict( |
|
max_new_tokens = 200, |
|
) |
|
|
|
num_runs = 10 |
|
|
|
for _ in range(num_runs): |
|
|
|
inputs = islice(free_group_bounded(3, max_length = prefix_length, random_length_method="constant"), batch_size) |
|
inputs = list(map(to_tokenizer, input)) |
|
inputs = tokenizer(input, return_tensors='pt').input_ids |
|
|
|
outputs = model.generate( |
|
inputs = input, |
|
**generation_config |
|
) |
|
|
|
outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True) |
|
outputs = map(from_tokenizer, outputs) |
|
|
|
condition = lambda x: all(map(lambda gen: is_from_singleton_normal_closure(gen, x), [[1], [2], [3], [1, 2, 3]])) |
|
outputs = filter(condition, outputs) |
|
|
|
print(list(outputs)) |
|
``` |
|
|