|
--- |
|
license: mit |
|
language: |
|
- ru |
|
tags: |
|
- russian |
|
- classification |
|
- toxicity |
|
widget: |
|
- text: Нелепые лохи недовольны всегда и всем |
|
--- |
|
|
|
Bert-based classifier (finetuned from [rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2)) |
|
|
|
Merged datasets: |
|
|
|
- [Russian Language Toxic Comments from 2ch.hk and pikabu.ru](https://www.kaggle.com/datasets/blackmoon/russian-language-toxic-comments) |
|
- [Toxic Russian Comments from ok.ru](https://www.kaggle.com/datasets/alexandersemiletov/toxic-russian-comments) |
|
|
|
The datasets split into train, val, test splits in 80-10-10 proportion |
|
The metrics obtained from test dataset is as follows: |
|
| |precision|recall|f1-score|support| |
|
|--------|---------|------|--------|-------| |
|
|0 |0.9827 |0.9827|0.9827 |21216 | |
|
|1 |0.9272 |0.9274|0.9273 |5054 | |
|
| | | | | | |
|
|accuracy| | |0.9720 |26270 | |
|
|macro avg|0.9550 |0.9550|0.9550 |26270 | |
|
|weighted avg|0.9720 |0.9720|0.9720 |26270 | |
|
|
|
### Usage |
|
|
|
```Python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
|
|
PATH = 'khvatov/ru_toxicity_detector' |
|
tokenizer = AutoTokenizer.from_pretrained(PATH) |
|
model = AutoModelForSequenceClassification.from_pretrained(PATH) |
|
|
|
# if torch.cuda.is_available(): |
|
# model.cuda() |
|
|
|
model.to(torch.device("cpu")) |
|
|
|
|
|
def get_toxicity_probs(text): |
|
with torch.no_grad(): |
|
inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True).to(model.device) |
|
proba = torch.nn.functional.softmax(model(**inputs).logits, dim=1).cpu().numpy() |
|
return proba[0] |
|
|
|
|
|
TEXT = "Марк был хороший" |
|
print(f'text = {TEXT}, probs={get_toxicity_probs(TEXT)}') |
|
# text = Марк был хороший, probs=[0.9940585 0.00594147] |
|
``` |
|
|
|
### Train |
|
The model has been trained with Adam optimizer, the learning rate of 2e-5, and batch size of 32 for 3 epochs |
|
|