File size: 5,585 Bytes
5e62e22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70221da
5e62e22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Loading Packages"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import torch\n",
    "import torch.nn as nn\n",
    "import torch.optim as optim\n",
    "from torch.utils.data import DataLoader\n",
    "# from transformers import SegformerConfig\n",
    "# from surya.model.detection.segformer import SegformerForRegressionMask\n",
    "from surya.input.processing import prepare_image_detection\n",
    "from surya.model.detection.segformer import load_processor , load_model\n",
    "from datasets import load_dataset\n",
    "from tqdm import tqdm\n",
    "from torch.utils.tensorboard import SummaryWriter\n",
    "import torch.nn.functional as F\n",
    "import numpy as np \n",
    "from surya.layout import parallel_get_regions"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Initializing The Dataset And Model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
    "dataset = load_dataset(\"vikp/publaynet_bench\", split=\"train[:100]\") # You can choose you own dataset\n",
    "model = load_model(\"vikp/surya_layout2\") "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Helper Functions, Loss Function And Optimizer"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "optimizer = optim.Adam(model.parameters(), lr=0.00001)\n",
    "log_dir = \"logs\"\n",
    "checkpoint_dir = \"checkpoints\"\n",
    "os.makedirs(log_dir, exist_ok=True)\n",
    "os.makedirs(checkpoint_dir, exist_ok=True)\n",
    "writer = SummaryWriter(log_dir=log_dir)\n",
    "\n",
    "def logits_to_bboxes(logits,image) : # This function is useful for converting the logits(mask) into bounding boxes.(The model does not provide bounding boxes.)\n",
    "    correct_shape = (300, 300)  \n",
    "    logits_temp = F.interpolate(logits, size=correct_shape, mode='bilinear', align_corners=False)\n",
    "    logits_temp = logits_temp.cpu().detach().numpy().astype(np.float32)\n",
    "\n",
    "    heatmap_count = logits_temp.shape[1]\n",
    "    heatmaps = [logits_temp[i][k] for i in range(logits_temp.shape[0]) for k in range(heatmap_count)]\n",
    "    regions = parallel_get_regions(heatmaps=heatmaps, orig_size=image.size, id2label=model.config.id2label)\n",
    "\n",
    "    final_bboxes = []\n",
    "    for i in regions.bboxes :\n",
    "        final_bboxes.append(i.bbox)\n",
    "    return final_bboxes\n",
    "\n",
    "\n",
    "def loss_function(): # This model does not have inbuild loss function, So we have to define it according to our dataset and the Requirements.\n",
    "    pass"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Fine-Tuning Process"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "num_epochs = 5\n",
    "for epoch in range(num_epochs):\n",
    "    model.train()\n",
    "    running_loss = 0.0\n",
    "    avg_loss = 0.0\n",
    "\n",
    "    for idx, item in enumerate(tqdm(dataset, desc=f\"Epoch {epoch + 1}/{num_epochs}\")):\n",
    "\n",
    "        images = [prepare_image_detection(img=item['image'], processor=load_processor())]\n",
    "        images = torch.stack(images, dim=0).to(model.dtype).to(model.device)\n",
    "        \n",
    "        optimizer.zero_grad()\n",
    "        outputs = model(pixel_values=images)\n",
    "\n",
    "        predicted_boxes = logits_to_bboxes(outputs.logits, item['image'])\n",
    "        target_boxes = item['bboxes']\n",
    "\n",
    "        loss = loss_function(predicted_boxes,target_boxes)\n",
    "\n",
    "        loss.backward()\n",
    "        optimizer.step()\n",
    "        running_loss += loss.item()\n",
    "\n",
    "        avg_loss = 0.9 * avg_loss + 0.1 * loss.item() if idx > 0 else loss.item()\n",
    "\n",
    "    avg_loss = running_loss / len(dataset)\n",
    "    writer.add_scalar('Training Loss', avg_loss, epoch + 1)\n",
    "    print(f\"Average Loss for Epoch {epoch + 1}: {avg_loss:.4f}\")\n",
    "\n",
    "    torch.save(model.state_dict(), os.path.join(checkpoint_dir, f\"model_epoch_{epoch + 1}.pth\"))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Loading The Checkpoint "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "checkpoint_path = 'checkpoints/model_epoch_350.pth'  \n",
    "state_dict = torch.load(checkpoint_path,weights_only=True)\n",
    "\n",
    "model.load_state_dict(state_dict)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "model.to('cpu')\n",
    "model.save_pretrained(\"fine-tuned-surya-model-layout\")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.14"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}