Upload layout-fine-tune.ipynb
Browse files- layout-fine-tune.ipynb +187 -0
layout-fine-tune.ipynb
ADDED
|
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"# Loading Packages"
|
| 8 |
+
]
|
| 9 |
+
},
|
| 10 |
+
{
|
| 11 |
+
"cell_type": "code",
|
| 12 |
+
"execution_count": null,
|
| 13 |
+
"metadata": {},
|
| 14 |
+
"outputs": [],
|
| 15 |
+
"source": [
|
| 16 |
+
"import os\n",
|
| 17 |
+
"import torch\n",
|
| 18 |
+
"import torch.nn as nn\n",
|
| 19 |
+
"import torch.optim as optim\n",
|
| 20 |
+
"from torch.utils.data import DataLoader\n",
|
| 21 |
+
"# from transformers import SegformerConfig\n",
|
| 22 |
+
"# from surya.model.detection.segformer import SegformerForRegressionMask\n",
|
| 23 |
+
"from surya.input.processing import prepare_image_detection\n",
|
| 24 |
+
"from surya.model.detection.segformer import load_processor , load_model\n",
|
| 25 |
+
"from datasets import load_dataset\n",
|
| 26 |
+
"from tqdm import tqdm\n",
|
| 27 |
+
"from torch.utils.tensorboard import SummaryWriter\n",
|
| 28 |
+
"import torch.nn.functional as F\n",
|
| 29 |
+
"import numpy as np \n",
|
| 30 |
+
"from surya.layout import parallel_get_regions"
|
| 31 |
+
]
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"cell_type": "markdown",
|
| 35 |
+
"metadata": {},
|
| 36 |
+
"source": [
|
| 37 |
+
"# Initializing The Dataset And Model"
|
| 38 |
+
]
|
| 39 |
+
},
|
| 40 |
+
{
|
| 41 |
+
"cell_type": "code",
|
| 42 |
+
"execution_count": null,
|
| 43 |
+
"metadata": {},
|
| 44 |
+
"outputs": [],
|
| 45 |
+
"source": [
|
| 46 |
+
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
| 47 |
+
"dataset = load_dataset(\"vikp/publaynet_bench\", split=\"train[:100]\") # You can choose you own dataset\n",
|
| 48 |
+
"model = load_model(\"vikp/surya_layout2\") "
|
| 49 |
+
]
|
| 50 |
+
},
|
| 51 |
+
{
|
| 52 |
+
"cell_type": "markdown",
|
| 53 |
+
"metadata": {},
|
| 54 |
+
"source": [
|
| 55 |
+
"# Helper Functions, Loss Function And Optimizer"
|
| 56 |
+
]
|
| 57 |
+
},
|
| 58 |
+
{
|
| 59 |
+
"cell_type": "code",
|
| 60 |
+
"execution_count": null,
|
| 61 |
+
"metadata": {},
|
| 62 |
+
"outputs": [],
|
| 63 |
+
"source": [
|
| 64 |
+
"\n",
|
| 65 |
+
"optimizer = optim.Adam(model.parameters(), lr=0.00001)\n",
|
| 66 |
+
"log_dir = \"logs\"\n",
|
| 67 |
+
"checkpoint_dir = \"checkpoints\"\n",
|
| 68 |
+
"os.makedirs(log_dir, exist_ok=True)\n",
|
| 69 |
+
"os.makedirs(checkpoint_dir, exist_ok=True)\n",
|
| 70 |
+
"writer = SummaryWriter(log_dir=log_dir)\n",
|
| 71 |
+
"\n",
|
| 72 |
+
"def logits_to_bboxes(logits,image) : # This function is useful for converting the mask into bounding boxes.(The model does not provide bounding boxes.)\n",
|
| 73 |
+
" correct_shape = (300, 300) \n",
|
| 74 |
+
" logits_temp = F.interpolate(logits, size=correct_shape, mode='bilinear', align_corners=False)\n",
|
| 75 |
+
" logits_temp = logits_temp.cpu().detach().numpy().astype(np.float32)\n",
|
| 76 |
+
"\n",
|
| 77 |
+
" heatmap_count = logits_temp.shape[1]\n",
|
| 78 |
+
" heatmaps = [logits_temp[i][k] for i in range(logits_temp.shape[0]) for k in range(heatmap_count)]\n",
|
| 79 |
+
" regions = parallel_get_regions(heatmaps=heatmaps, orig_size=image.size, id2label=model.config.id2label)\n",
|
| 80 |
+
"\n",
|
| 81 |
+
" final_bboxes = []\n",
|
| 82 |
+
" for i in regions.bboxes :\n",
|
| 83 |
+
" final_bboxes.append(i.bbox)\n",
|
| 84 |
+
" return final_bboxes\n",
|
| 85 |
+
"\n",
|
| 86 |
+
"\n",
|
| 87 |
+
"def loss_function(): # This model does not have inbuild loss function, So we have to define it according to our dataset and the Requirements.\n",
|
| 88 |
+
" pass"
|
| 89 |
+
]
|
| 90 |
+
},
|
| 91 |
+
{
|
| 92 |
+
"cell_type": "markdown",
|
| 93 |
+
"metadata": {},
|
| 94 |
+
"source": [
|
| 95 |
+
"# Fine-Tuning Process"
|
| 96 |
+
]
|
| 97 |
+
},
|
| 98 |
+
{
|
| 99 |
+
"cell_type": "code",
|
| 100 |
+
"execution_count": null,
|
| 101 |
+
"metadata": {},
|
| 102 |
+
"outputs": [],
|
| 103 |
+
"source": [
|
| 104 |
+
"num_epochs = 5\n",
|
| 105 |
+
"for epoch in range(num_epochs):\n",
|
| 106 |
+
" model.train()\n",
|
| 107 |
+
" running_loss = 0.0\n",
|
| 108 |
+
" avg_loss = 0.0\n",
|
| 109 |
+
"\n",
|
| 110 |
+
" for idx, item in enumerate(tqdm(dataset, desc=f\"Epoch {epoch + 1}/{num_epochs}\")):\n",
|
| 111 |
+
"\n",
|
| 112 |
+
" images = [prepare_image_detection(img=item['image'], processor=load_processor())]\n",
|
| 113 |
+
" images = torch.stack(images, dim=0).to(model.dtype).to(model.device)\n",
|
| 114 |
+
" \n",
|
| 115 |
+
" optimizer.zero_grad()\n",
|
| 116 |
+
" outputs = model(pixel_values=images)\n",
|
| 117 |
+
"\n",
|
| 118 |
+
" predicted_boxes = logits_to_bboxes(outputs.logits, item['image'])\n",
|
| 119 |
+
" target_boxes = item['bboxes']\n",
|
| 120 |
+
"\n",
|
| 121 |
+
" loss = loss_function(predicted_boxes,target_boxes)\n",
|
| 122 |
+
"\n",
|
| 123 |
+
" loss.backward()\n",
|
| 124 |
+
" optimizer.step()\n",
|
| 125 |
+
" running_loss += loss.item()\n",
|
| 126 |
+
"\n",
|
| 127 |
+
" avg_loss = 0.9 * avg_loss + 0.1 * loss.item() if idx > 0 else loss.item()\n",
|
| 128 |
+
"\n",
|
| 129 |
+
" avg_loss = running_loss / len(dataset)\n",
|
| 130 |
+
" writer.add_scalar('Training Loss', avg_loss, epoch + 1)\n",
|
| 131 |
+
" print(f\"Average Loss for Epoch {epoch + 1}: {avg_loss:.4f}\")\n",
|
| 132 |
+
"\n",
|
| 133 |
+
" torch.save(model.state_dict(), os.path.join(checkpoint_dir, f\"model_epoch_{epoch + 1}.pth\"))"
|
| 134 |
+
]
|
| 135 |
+
},
|
| 136 |
+
{
|
| 137 |
+
"cell_type": "markdown",
|
| 138 |
+
"metadata": {},
|
| 139 |
+
"source": [
|
| 140 |
+
"# Loading The Checkpoint "
|
| 141 |
+
]
|
| 142 |
+
},
|
| 143 |
+
{
|
| 144 |
+
"cell_type": "code",
|
| 145 |
+
"execution_count": null,
|
| 146 |
+
"metadata": {},
|
| 147 |
+
"outputs": [],
|
| 148 |
+
"source": [
|
| 149 |
+
"checkpoint_path = 'checkpoints/model_epoch_350.pth' \n",
|
| 150 |
+
"state_dict = torch.load(checkpoint_path,weights_only=True)\n",
|
| 151 |
+
"\n",
|
| 152 |
+
"model.load_state_dict(state_dict)"
|
| 153 |
+
]
|
| 154 |
+
},
|
| 155 |
+
{
|
| 156 |
+
"cell_type": "code",
|
| 157 |
+
"execution_count": null,
|
| 158 |
+
"metadata": {},
|
| 159 |
+
"outputs": [],
|
| 160 |
+
"source": [
|
| 161 |
+
"model.to('cpu')\n",
|
| 162 |
+
"model.save_pretrained(\"fine-tuned-surya-model-layout\")"
|
| 163 |
+
]
|
| 164 |
+
}
|
| 165 |
+
],
|
| 166 |
+
"metadata": {
|
| 167 |
+
"kernelspec": {
|
| 168 |
+
"display_name": "Python 3",
|
| 169 |
+
"language": "python",
|
| 170 |
+
"name": "python3"
|
| 171 |
+
},
|
| 172 |
+
"language_info": {
|
| 173 |
+
"codemirror_mode": {
|
| 174 |
+
"name": "ipython",
|
| 175 |
+
"version": 3
|
| 176 |
+
},
|
| 177 |
+
"file_extension": ".py",
|
| 178 |
+
"mimetype": "text/x-python",
|
| 179 |
+
"name": "python",
|
| 180 |
+
"nbconvert_exporter": "python",
|
| 181 |
+
"pygments_lexer": "ipython3",
|
| 182 |
+
"version": "3.10.14"
|
| 183 |
+
}
|
| 184 |
+
},
|
| 185 |
+
"nbformat": 4,
|
| 186 |
+
"nbformat_minor": 2
|
| 187 |
+
}
|