Upload layout-fine-tune.ipynb
Browse files- layout-fine-tune.ipynb +187 -0
layout-fine-tune.ipynb
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"# Loading Packages"
|
8 |
+
]
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"cell_type": "code",
|
12 |
+
"execution_count": null,
|
13 |
+
"metadata": {},
|
14 |
+
"outputs": [],
|
15 |
+
"source": [
|
16 |
+
"import os\n",
|
17 |
+
"import torch\n",
|
18 |
+
"import torch.nn as nn\n",
|
19 |
+
"import torch.optim as optim\n",
|
20 |
+
"from torch.utils.data import DataLoader\n",
|
21 |
+
"# from transformers import SegformerConfig\n",
|
22 |
+
"# from surya.model.detection.segformer import SegformerForRegressionMask\n",
|
23 |
+
"from surya.input.processing import prepare_image_detection\n",
|
24 |
+
"from surya.model.detection.segformer import load_processor , load_model\n",
|
25 |
+
"from datasets import load_dataset\n",
|
26 |
+
"from tqdm import tqdm\n",
|
27 |
+
"from torch.utils.tensorboard import SummaryWriter\n",
|
28 |
+
"import torch.nn.functional as F\n",
|
29 |
+
"import numpy as np \n",
|
30 |
+
"from surya.layout import parallel_get_regions"
|
31 |
+
]
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"cell_type": "markdown",
|
35 |
+
"metadata": {},
|
36 |
+
"source": [
|
37 |
+
"# Initializing The Dataset And Model"
|
38 |
+
]
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"cell_type": "code",
|
42 |
+
"execution_count": null,
|
43 |
+
"metadata": {},
|
44 |
+
"outputs": [],
|
45 |
+
"source": [
|
46 |
+
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
47 |
+
"dataset = load_dataset(\"vikp/publaynet_bench\", split=\"train[:100]\") # You can choose you own dataset\n",
|
48 |
+
"model = load_model(\"vikp/surya_layout2\") "
|
49 |
+
]
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"cell_type": "markdown",
|
53 |
+
"metadata": {},
|
54 |
+
"source": [
|
55 |
+
"# Helper Functions, Loss Function And Optimizer"
|
56 |
+
]
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"cell_type": "code",
|
60 |
+
"execution_count": null,
|
61 |
+
"metadata": {},
|
62 |
+
"outputs": [],
|
63 |
+
"source": [
|
64 |
+
"\n",
|
65 |
+
"optimizer = optim.Adam(model.parameters(), lr=0.00001)\n",
|
66 |
+
"log_dir = \"logs\"\n",
|
67 |
+
"checkpoint_dir = \"checkpoints\"\n",
|
68 |
+
"os.makedirs(log_dir, exist_ok=True)\n",
|
69 |
+
"os.makedirs(checkpoint_dir, exist_ok=True)\n",
|
70 |
+
"writer = SummaryWriter(log_dir=log_dir)\n",
|
71 |
+
"\n",
|
72 |
+
"def logits_to_bboxes(logits,image) : # This function is useful for converting the mask into bounding boxes.(The model does not provide bounding boxes.)\n",
|
73 |
+
" correct_shape = (300, 300) \n",
|
74 |
+
" logits_temp = F.interpolate(logits, size=correct_shape, mode='bilinear', align_corners=False)\n",
|
75 |
+
" logits_temp = logits_temp.cpu().detach().numpy().astype(np.float32)\n",
|
76 |
+
"\n",
|
77 |
+
" heatmap_count = logits_temp.shape[1]\n",
|
78 |
+
" heatmaps = [logits_temp[i][k] for i in range(logits_temp.shape[0]) for k in range(heatmap_count)]\n",
|
79 |
+
" regions = parallel_get_regions(heatmaps=heatmaps, orig_size=image.size, id2label=model.config.id2label)\n",
|
80 |
+
"\n",
|
81 |
+
" final_bboxes = []\n",
|
82 |
+
" for i in regions.bboxes :\n",
|
83 |
+
" final_bboxes.append(i.bbox)\n",
|
84 |
+
" return final_bboxes\n",
|
85 |
+
"\n",
|
86 |
+
"\n",
|
87 |
+
"def loss_function(): # This model does not have inbuild loss function, So we have to define it according to our dataset and the Requirements.\n",
|
88 |
+
" pass"
|
89 |
+
]
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"cell_type": "markdown",
|
93 |
+
"metadata": {},
|
94 |
+
"source": [
|
95 |
+
"# Fine-Tuning Process"
|
96 |
+
]
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"cell_type": "code",
|
100 |
+
"execution_count": null,
|
101 |
+
"metadata": {},
|
102 |
+
"outputs": [],
|
103 |
+
"source": [
|
104 |
+
"num_epochs = 5\n",
|
105 |
+
"for epoch in range(num_epochs):\n",
|
106 |
+
" model.train()\n",
|
107 |
+
" running_loss = 0.0\n",
|
108 |
+
" avg_loss = 0.0\n",
|
109 |
+
"\n",
|
110 |
+
" for idx, item in enumerate(tqdm(dataset, desc=f\"Epoch {epoch + 1}/{num_epochs}\")):\n",
|
111 |
+
"\n",
|
112 |
+
" images = [prepare_image_detection(img=item['image'], processor=load_processor())]\n",
|
113 |
+
" images = torch.stack(images, dim=0).to(model.dtype).to(model.device)\n",
|
114 |
+
" \n",
|
115 |
+
" optimizer.zero_grad()\n",
|
116 |
+
" outputs = model(pixel_values=images)\n",
|
117 |
+
"\n",
|
118 |
+
" predicted_boxes = logits_to_bboxes(outputs.logits, item['image'])\n",
|
119 |
+
" target_boxes = item['bboxes']\n",
|
120 |
+
"\n",
|
121 |
+
" loss = loss_function(predicted_boxes,target_boxes)\n",
|
122 |
+
"\n",
|
123 |
+
" loss.backward()\n",
|
124 |
+
" optimizer.step()\n",
|
125 |
+
" running_loss += loss.item()\n",
|
126 |
+
"\n",
|
127 |
+
" avg_loss = 0.9 * avg_loss + 0.1 * loss.item() if idx > 0 else loss.item()\n",
|
128 |
+
"\n",
|
129 |
+
" avg_loss = running_loss / len(dataset)\n",
|
130 |
+
" writer.add_scalar('Training Loss', avg_loss, epoch + 1)\n",
|
131 |
+
" print(f\"Average Loss for Epoch {epoch + 1}: {avg_loss:.4f}\")\n",
|
132 |
+
"\n",
|
133 |
+
" torch.save(model.state_dict(), os.path.join(checkpoint_dir, f\"model_epoch_{epoch + 1}.pth\"))"
|
134 |
+
]
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"cell_type": "markdown",
|
138 |
+
"metadata": {},
|
139 |
+
"source": [
|
140 |
+
"# Loading The Checkpoint "
|
141 |
+
]
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"cell_type": "code",
|
145 |
+
"execution_count": null,
|
146 |
+
"metadata": {},
|
147 |
+
"outputs": [],
|
148 |
+
"source": [
|
149 |
+
"checkpoint_path = 'checkpoints/model_epoch_350.pth' \n",
|
150 |
+
"state_dict = torch.load(checkpoint_path,weights_only=True)\n",
|
151 |
+
"\n",
|
152 |
+
"model.load_state_dict(state_dict)"
|
153 |
+
]
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"cell_type": "code",
|
157 |
+
"execution_count": null,
|
158 |
+
"metadata": {},
|
159 |
+
"outputs": [],
|
160 |
+
"source": [
|
161 |
+
"model.to('cpu')\n",
|
162 |
+
"model.save_pretrained(\"fine-tuned-surya-model-layout\")"
|
163 |
+
]
|
164 |
+
}
|
165 |
+
],
|
166 |
+
"metadata": {
|
167 |
+
"kernelspec": {
|
168 |
+
"display_name": "Python 3",
|
169 |
+
"language": "python",
|
170 |
+
"name": "python3"
|
171 |
+
},
|
172 |
+
"language_info": {
|
173 |
+
"codemirror_mode": {
|
174 |
+
"name": "ipython",
|
175 |
+
"version": 3
|
176 |
+
},
|
177 |
+
"file_extension": ".py",
|
178 |
+
"mimetype": "text/x-python",
|
179 |
+
"name": "python",
|
180 |
+
"nbconvert_exporter": "python",
|
181 |
+
"pygments_lexer": "ipython3",
|
182 |
+
"version": "3.10.14"
|
183 |
+
}
|
184 |
+
},
|
185 |
+
"nbformat": 4,
|
186 |
+
"nbformat_minor": 2
|
187 |
+
}
|