quantization / cutlass_w8a8 /scaled_mm_c3x.cu
danieldk's picture
danieldk HF Staff
Add cutlass_w8a8
b4cad21
raw
history blame
18 kB
// clang-format will break include orders
// clang-format off
#include <cudaTypedefs.h>
#if defined CUDA_VERSION && CUDA_VERSION >= 12000
#include <torch/all.h>
#include <ATen/cuda/CUDAContext.h>
#include <iostream>
#include <sstream>
#include <vector>
#include "cutlass/cutlass.h"
#include "cute/tensor.hpp"
#include "cute/atom/mma_atom.hpp"
#include "cutlass/numeric_types.h"
#include "cutlass/gemm/device/gemm_universal_adapter.h"
#include "cutlass/gemm/kernel/gemm_universal.hpp"
#include "cutlass/epilogue/collective/collective_builder.hpp"
#include "cutlass/gemm/collective/collective_builder.hpp"
#include "cutlass_extensions/epilogue/scaled_mm_epilogues_c3x.hpp"
#include "common.hpp"
// clang-format on
using namespace cute;
using namespace vllm;
/*
This file defines quantized GEMM operations using the CUTLASS 3.x API, for
NVIDIA GPUs with sm90a (Hopper) or later.
Epilogue functions can be defined to post-process the output before it is
written to GPU memory.
Epilogues must contain a public type named EVTCompute of type Sm90EVT,
as well as a static prepare_args function that constructs an
EVTCompute::Arguments struct.
*/
namespace {
// A wrapper for the GEMM kernel that is used to guard against compilation on
// architectures that will never use the kernel. The purpose of this is to
// reduce the size of the compiled binary.
// __CUDA_ARCH__ is not defined in host code, so this lets us smuggle the ifdef
// into code that will be executed on the device where it is defined.
template <typename Kernel>
struct enable_sm90_or_later : Kernel {
template <typename... Args>
CUTLASS_DEVICE void operator()(Args&&... args) {
#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 900
Kernel::operator()(std::forward<Args>(args)...);
#endif
}
};
template <typename ElementAB_, typename ElementD_,
template <typename, typename, typename> typename Epilogue_,
typename TileShape, typename ClusterShape, typename KernelSchedule,
typename EpilogueSchedule>
struct cutlass_3x_gemm {
using ElementAB = ElementAB_;
using ElementD = ElementD_;
using ElementAcc =
typename std::conditional<std::is_same_v<ElementAB, int8_t>, int32_t,
float>::type;
using EpilogueDescriptor =
cutlass::epilogue::collective::detail::EpilogueDescriptor<
TileShape, cutlass::epilogue::collective::EpilogueTileAuto, ElementD,
ElementD, EpilogueSchedule>;
using Epilogue = Epilogue_<ElementAcc, ElementD, EpilogueDescriptor>;
using StrideD = Stride<int64_t, Int<1>, Int<0>>;
using ElementC = void;
using StrideC = StrideD;
using EVTCompute = typename Epilogue::EVTCompute;
using CollectiveEpilogue =
typename cutlass::epilogue::collective::CollectiveBuilder<
cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, TileShape,
ClusterShape, cutlass::epilogue::collective::EpilogueTileAuto,
ElementAcc, float, ElementC, StrideC, 4, ElementD, StrideD, 4,
EpilogueSchedule, EVTCompute>::CollectiveOp;
static constexpr size_t CEStorageSize =
sizeof(typename CollectiveEpilogue::SharedStorage);
using Stages = typename cutlass::gemm::collective::StageCountAutoCarveout<
static_cast<int>(CEStorageSize)>;
// clang-format off
using CollectiveMainloop =
typename cutlass::gemm::collective::CollectiveBuilder<
cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp,
ElementAB, cutlass::layout::RowMajor, 16,
ElementAB, cutlass::layout::ColumnMajor, 16,
ElementAcc, TileShape, ClusterShape,
Stages,
KernelSchedule>::CollectiveOp;
// clang-format on
using KernelType = enable_sm90_or_later<cutlass::gemm::kernel::GemmUniversal<
cute::Shape<int, int, int, int>, CollectiveMainloop, CollectiveEpilogue,
cutlass::gemm::PersistentScheduler>>;
struct GemmKernel : public KernelType {};
};
template <typename Gemm, typename... EpilogueArgs>
void cutlass_gemm_caller(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b,
EpilogueArgs&&... epilogue_params) {
using ElementAB = typename Gemm::ElementAB;
using ElementD = typename Gemm::ElementD;
int32_t m = a.size(0);
int32_t n = b.size(1);
int32_t k = a.size(1);
int64_t lda = a.stride(0);
int64_t ldb = b.stride(1);
int64_t ldc = out.stride(0);
using StrideA = Stride<int64_t, Int<1>, int64_t>;
using StrideB = Stride<int64_t, Int<1>, int64_t>;
using StrideC = typename Gemm::StrideC;
StrideA a_stride{lda, Int<1>{}, 0};
StrideB b_stride{ldb, Int<1>{}, 0};
StrideC c_stride{ldc, Int<1>{}, Int<0>{}};
using GemmKernel = typename Gemm::GemmKernel;
typename GemmKernel::ProblemShape prob_shape{m, n, k, 1};
auto a_ptr = static_cast<ElementAB*>(a.data_ptr());
auto b_ptr = static_cast<ElementAB*>(b.data_ptr());
typename GemmKernel::MainloopArguments mainloop_args{a_ptr, a_stride, b_ptr,
b_stride};
auto c_ptr = static_cast<ElementD*>(out.data_ptr());
typename GemmKernel::EpilogueArguments epilogue_args{
Gemm::Epilogue::prepare_args(
std::forward<EpilogueArgs>(epilogue_params)...),
c_ptr, c_stride, c_ptr, c_stride};
typename GemmKernel::Arguments args{cutlass::gemm::GemmUniversalMode::kGemm,
prob_shape, mainloop_args, epilogue_args};
// Launch the CUTLASS GEMM kernel.
using GemmOp = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;
GemmOp gemm_op;
CUTLASS_CHECK(gemm_op.can_implement(args));
size_t workspace_size = gemm_op.get_workspace_size(args);
auto const workspace_options =
torch::TensorOptions().dtype(torch::kUInt8).device(a.device());
auto workspace = torch::empty(workspace_size, workspace_options);
auto stream = at::cuda::getCurrentCUDAStream(a.get_device());
cutlass::Status status = gemm_op.run(args, workspace.data_ptr(), stream);
CUTLASS_CHECK(status);
}
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_fp8_config_default {
// M in (128, inf)
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule =
cutlass::gemm::KernelTmaWarpSpecializedPingpongFP8FastAccum;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_128, _128, _128>;
using ClusterShape = Shape<_2, _1, _1>;
using Cutlass3xGemm =
cutlass_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_fp8_config_M128 {
// M in (64, 128]
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule =
cutlass::gemm::KernelTmaWarpSpecializedPingpongFP8FastAccum;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_64, _128, _128>;
using ClusterShape = Shape<_2, _1, _1>;
using Cutlass3xGemm =
cutlass_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_fp8_config_M64 {
// M in [1, 64]
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule =
cutlass::gemm::KernelTmaWarpSpecializedPingpongFP8FastAccum;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_64, _64, _128>;
using ClusterShape = Shape<_1, _8, _1>;
using Cutlass3xGemm =
cutlass_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_int8_config_default {
// For M > 128 and any N
static_assert(std::is_same<InType, int8_t>());
using KernelSchedule =
typename cutlass::gemm::KernelTmaWarpSpecializedPingpong;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_128, _128, _128>;
using ClusterShape = Shape<_2, _1, _1>;
using Cutlass3xGemm =
cutlass_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_int8_config_M128 {
// For M in (64, 128] and any N
static_assert(std::is_same<InType, int8_t>());
using KernelSchedule =
typename cutlass::gemm::KernelTmaWarpSpecializedPingpong;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_64, _128, _128>;
using ClusterShape = Shape<_2, _1, _1>;
using Cutlass3xGemm =
cutlass_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_int8_config_M64 {
// For M in (32, 64] and any N
static_assert(std::is_same<InType, int8_t>());
using KernelSchedule = typename cutlass::gemm::KernelTmaWarpSpecialized;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_64, _64, _256>;
using ClusterShape = Shape<_1, _1, _1>;
using Cutlass3xGemm =
cutlass_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_int8_config_M32_NBig {
// For M in [1, 32] and N >= 8192
static_assert(std::is_same<InType, int8_t>());
using KernelSchedule = typename cutlass::gemm::KernelTmaWarpSpecialized;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_64, _128, _256>;
using ClusterShape = Shape<_1, _4, _1>;
using Cutlass3xGemm =
cutlass_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_int8_config_M32_NSmall {
// For M in [1, 32] and N < 8192
static_assert(std::is_same<InType, int8_t>());
using KernelSchedule = typename cutlass::gemm::KernelTmaWarpSpecialized;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_64, _64, _256>;
using ClusterShape = Shape<_1, _8, _1>;
using Cutlass3xGemm =
cutlass_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
} // namespace
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue,
typename... EpilogueArgs>
void cutlass_gemm_sm90_fp8_dispatch(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b,
EpilogueArgs&&... args) {
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
TORCH_CHECK(a.dtype() == torch::kFloat8_e4m3fn);
TORCH_CHECK(b.dtype() == torch::kFloat8_e4m3fn);
using Cutlass3xGemmDefault =
typename sm90_fp8_config_default<InType, OutType,
Epilogue>::Cutlass3xGemm;
using Cutlass3xGemmM64 =
typename sm90_fp8_config_M64<InType, OutType, Epilogue>::Cutlass3xGemm;
using Cutlass3xGemmM128 =
typename sm90_fp8_config_M128<InType, OutType, Epilogue>::Cutlass3xGemm;
uint32_t const m = a.size(0);
uint32_t const mp2 =
std::max(static_cast<uint32_t>(64), next_pow_2(m)); // next power of 2
if (mp2 <= 64) {
// m in [1, 64]
return cutlass_gemm_caller<Cutlass3xGemmM64>(
out, a, b, std::forward<EpilogueArgs>(args)...);
} else if (mp2 <= 128) {
// m in (64, 128]
return cutlass_gemm_caller<Cutlass3xGemmM128>(
out, a, b, std::forward<EpilogueArgs>(args)...);
} else {
// m in (128, inf)
return cutlass_gemm_caller<Cutlass3xGemmDefault>(
out, a, b, std::forward<EpilogueArgs>(args)...);
}
}
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue,
typename... EpilogueArgs>
void cutlass_gemm_sm90_int8_dispatch(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b,
EpilogueArgs&&... args) {
static_assert(std::is_same<InType, int8_t>());
TORCH_CHECK(a.dtype() == torch::kInt8);
TORCH_CHECK(b.dtype() == torch::kInt8);
using Cutlass3xGemmDefault =
typename sm90_int8_config_default<InType, OutType,
Epilogue>::Cutlass3xGemm;
using Cutlass3xGemmM128 =
typename sm90_int8_config_M128<InType, OutType, Epilogue>::Cutlass3xGemm;
using Cutlass3xGemmM64 =
typename sm90_int8_config_M64<InType, OutType, Epilogue>::Cutlass3xGemm;
using Cutlass3xGemmM32NBig =
typename sm90_int8_config_M32_NBig<InType, OutType,
Epilogue>::Cutlass3xGemm;
using Cutlass3xGemmM32NSmall =
typename sm90_int8_config_M32_NSmall<InType, OutType,
Epilogue>::Cutlass3xGemm;
uint32_t const n = out.size(1);
bool const is_small_n = n < 8192;
uint32_t const m = a.size(0);
uint32_t const mp2 =
std::max(static_cast<uint32_t>(32), next_pow_2(m)); // next power of 2
if (mp2 <= 32) {
// m in [1, 32]
if (is_small_n) {
return cutlass_gemm_caller<Cutlass3xGemmM32NSmall>(
out, a, b, std::forward<EpilogueArgs>(args)...);
} else {
return cutlass_gemm_caller<Cutlass3xGemmM32NBig>(
out, a, b, std::forward<EpilogueArgs>(args)...);
}
} else if (mp2 <= 64) {
// m in (32, 64]
return cutlass_gemm_caller<Cutlass3xGemmM64>(
out, a, b, std::forward<EpilogueArgs>(args)...);
} else if (mp2 <= 128) {
// m in (64, 128]
return cutlass_gemm_caller<Cutlass3xGemmM128>(
out, a, b, std::forward<EpilogueArgs>(args)...);
} else {
// m in (128, inf)
return cutlass_gemm_caller<Cutlass3xGemmDefault>(
out, a, b, std::forward<EpilogueArgs>(args)...);
}
}
template <template <typename, typename, typename> typename Epilogue,
typename... EpilogueArgs>
void cutlass_scaled_mm_sm90_epilogue(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b,
EpilogueArgs&&... epilogue_args) {
if (a.dtype() == torch::kInt8) {
TORCH_CHECK(b.dtype() == torch::kInt8);
if (out.dtype() == torch::kBFloat16) {
return cutlass_gemm_sm90_int8_dispatch<int8_t, cutlass::bfloat16_t,
Epilogue>(
out, a, b, std::forward<EpilogueArgs>(epilogue_args)...);
} else {
TORCH_CHECK(out.dtype() == torch::kFloat16);
return cutlass_gemm_sm90_int8_dispatch<int8_t, cutlass::half_t, Epilogue>(
out, a, b, std::forward<EpilogueArgs>(epilogue_args)...);
}
} else {
TORCH_CHECK(a.dtype() == torch::kFloat8_e4m3fn);
TORCH_CHECK(b.dtype() == torch::kFloat8_e4m3fn);
if (out.dtype() == torch::kBFloat16) {
return cutlass_gemm_sm90_fp8_dispatch<cutlass::float_e4m3_t,
cutlass::bfloat16_t, Epilogue>(
out, a, b, std::forward<EpilogueArgs>(epilogue_args)...);
} else {
TORCH_CHECK(out.dtype() == torch::kFloat16);
return cutlass_gemm_sm90_fp8_dispatch<cutlass::float_e4m3_t,
cutlass::half_t, Epilogue>(
out, a, b, std::forward<EpilogueArgs>(epilogue_args)...);
}
}
}
void cutlass_scaled_mm_sm90(torch::Tensor& c, torch::Tensor const& a,
torch::Tensor const& b,
torch::Tensor const& a_scales,
torch::Tensor const& b_scales,
c10::optional<torch::Tensor> const& bias) {
TORCH_CHECK(a_scales.dtype() == torch::kFloat32);
TORCH_CHECK(b_scales.dtype() == torch::kFloat32);
if (bias) {
TORCH_CHECK(bias->dtype() == c.dtype(),
"currently bias dtype must match output dtype ", c.dtype());
return cutlass_scaled_mm_sm90_epilogue<c3x::ScaledEpilogueBias>(
c, a, b, a_scales, b_scales, *bias);
} else {
return cutlass_scaled_mm_sm90_epilogue<c3x::ScaledEpilogue>(
c, a, b, a_scales, b_scales);
}
}
void cutlass_scaled_mm_azp_sm90(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b,
torch::Tensor const& a_scales,
torch::Tensor const& b_scales,
torch::Tensor const& azp_adj,
c10::optional<torch::Tensor> const& azp,
c10::optional<torch::Tensor> const& bias) {
TORCH_CHECK(a_scales.dtype() == torch::kFloat32);
TORCH_CHECK(b_scales.dtype() == torch::kFloat32);
if (azp) {
return cutlass_scaled_mm_sm90_epilogue<c3x::ScaledEpilogueBiasAzpToken>(
out, a, b, a_scales, b_scales, azp_adj, *azp, bias);
} else {
return cutlass_scaled_mm_sm90_epilogue<c3x::ScaledEpilogueBiasAzp>(
out, a, b, a_scales, b_scales, azp_adj, bias);
}
}
#endif