File size: 17,963 Bytes
b4cad21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
// clang-format will break include orders
// clang-format off
#include <cudaTypedefs.h>

#if defined CUDA_VERSION && CUDA_VERSION >= 12000

#include <torch/all.h>

#include <ATen/cuda/CUDAContext.h>

#include <iostream>
#include <sstream>
#include <vector>

#include "cutlass/cutlass.h"

#include "cute/tensor.hpp"
#include "cute/atom/mma_atom.hpp"
#include "cutlass/numeric_types.h"

#include "cutlass/gemm/device/gemm_universal_adapter.h"
#include "cutlass/gemm/kernel/gemm_universal.hpp"
#include "cutlass/epilogue/collective/collective_builder.hpp"
#include "cutlass/gemm/collective/collective_builder.hpp"

#include "cutlass_extensions/epilogue/scaled_mm_epilogues_c3x.hpp"
#include "common.hpp"
// clang-format on

using namespace cute;
using namespace vllm;

/*
   This file defines quantized GEMM operations using the CUTLASS 3.x API, for
   NVIDIA GPUs with sm90a (Hopper) or later.

   Epilogue functions can be defined to post-process the output before it is
   written to GPU memory.
   Epilogues must contain a public type named EVTCompute of type Sm90EVT,
   as well as a static prepare_args function that constructs an
   EVTCompute::Arguments struct.
*/

namespace {

// A wrapper for the GEMM kernel that is used to guard against compilation on
// architectures that will never use the kernel. The purpose of this is to
// reduce the size of the compiled binary.
// __CUDA_ARCH__ is not defined in host code, so this lets us smuggle the ifdef
// into code that will be executed on the device where it is defined.
template <typename Kernel>
struct enable_sm90_or_later : Kernel {
  template <typename... Args>
  CUTLASS_DEVICE void operator()(Args&&... args) {
  #if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 900
    Kernel::operator()(std::forward<Args>(args)...);
  #endif
  }
};
template <typename ElementAB_, typename ElementD_,
          template <typename, typename, typename> typename Epilogue_,
          typename TileShape, typename ClusterShape, typename KernelSchedule,
          typename EpilogueSchedule>
struct cutlass_3x_gemm {
  using ElementAB = ElementAB_;
  using ElementD = ElementD_;
  using ElementAcc =
      typename std::conditional<std::is_same_v<ElementAB, int8_t>, int32_t,
                                float>::type;

  using EpilogueDescriptor =
      cutlass::epilogue::collective::detail::EpilogueDescriptor<
          TileShape, cutlass::epilogue::collective::EpilogueTileAuto, ElementD,
          ElementD, EpilogueSchedule>;

  using Epilogue = Epilogue_<ElementAcc, ElementD, EpilogueDescriptor>;

  using StrideD = Stride<int64_t, Int<1>, Int<0>>;
  using ElementC = void;
  using StrideC = StrideD;

  using EVTCompute = typename Epilogue::EVTCompute;

  using CollectiveEpilogue =
      typename cutlass::epilogue::collective::CollectiveBuilder<
          cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, TileShape,
          ClusterShape, cutlass::epilogue::collective::EpilogueTileAuto,
          ElementAcc, float, ElementC, StrideC, 4, ElementD, StrideD, 4,
          EpilogueSchedule, EVTCompute>::CollectiveOp;

  static constexpr size_t CEStorageSize =
      sizeof(typename CollectiveEpilogue::SharedStorage);
  using Stages = typename cutlass::gemm::collective::StageCountAutoCarveout<
      static_cast<int>(CEStorageSize)>;

  // clang-format off
  using CollectiveMainloop =
      typename cutlass::gemm::collective::CollectiveBuilder<
          cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, 
          ElementAB, cutlass::layout::RowMajor, 16, 
          ElementAB, cutlass::layout::ColumnMajor, 16, 
          ElementAcc, TileShape, ClusterShape,
          Stages,
          KernelSchedule>::CollectiveOp;
  // clang-format on

  using KernelType = enable_sm90_or_later<cutlass::gemm::kernel::GemmUniversal<
      cute::Shape<int, int, int, int>, CollectiveMainloop, CollectiveEpilogue,
      cutlass::gemm::PersistentScheduler>>;

  struct GemmKernel : public KernelType {};
};

template <typename Gemm, typename... EpilogueArgs>
void cutlass_gemm_caller(torch::Tensor& out, torch::Tensor const& a,
                         torch::Tensor const& b,
                         EpilogueArgs&&... epilogue_params) {
  using ElementAB = typename Gemm::ElementAB;
  using ElementD = typename Gemm::ElementD;

  int32_t m = a.size(0);
  int32_t n = b.size(1);
  int32_t k = a.size(1);

  int64_t lda = a.stride(0);
  int64_t ldb = b.stride(1);
  int64_t ldc = out.stride(0);

  using StrideA = Stride<int64_t, Int<1>, int64_t>;
  using StrideB = Stride<int64_t, Int<1>, int64_t>;
  using StrideC = typename Gemm::StrideC;

  StrideA a_stride{lda, Int<1>{}, 0};
  StrideB b_stride{ldb, Int<1>{}, 0};
  StrideC c_stride{ldc, Int<1>{}, Int<0>{}};

  using GemmKernel = typename Gemm::GemmKernel;
  typename GemmKernel::ProblemShape prob_shape{m, n, k, 1};

  auto a_ptr = static_cast<ElementAB*>(a.data_ptr());
  auto b_ptr = static_cast<ElementAB*>(b.data_ptr());
  typename GemmKernel::MainloopArguments mainloop_args{a_ptr, a_stride, b_ptr,
                                                       b_stride};

  auto c_ptr = static_cast<ElementD*>(out.data_ptr());
  typename GemmKernel::EpilogueArguments epilogue_args{
      Gemm::Epilogue::prepare_args(
          std::forward<EpilogueArgs>(epilogue_params)...),
      c_ptr, c_stride, c_ptr, c_stride};

  typename GemmKernel::Arguments args{cutlass::gemm::GemmUniversalMode::kGemm,
                                      prob_shape, mainloop_args, epilogue_args};

  // Launch the CUTLASS GEMM kernel.
  using GemmOp = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;
  GemmOp gemm_op;
  CUTLASS_CHECK(gemm_op.can_implement(args));

  size_t workspace_size = gemm_op.get_workspace_size(args);
  auto const workspace_options =
      torch::TensorOptions().dtype(torch::kUInt8).device(a.device());
  auto workspace = torch::empty(workspace_size, workspace_options);

  auto stream = at::cuda::getCurrentCUDAStream(a.get_device());

  cutlass::Status status = gemm_op.run(args, workspace.data_ptr(), stream);
  CUTLASS_CHECK(status);
}

template <typename InType, typename OutType,
          template <typename, typename, typename> typename Epilogue>
struct sm90_fp8_config_default {
  // M in (128, inf)
  static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
  using KernelSchedule =
      cutlass::gemm::KernelTmaWarpSpecializedPingpongFP8FastAccum;
  using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
  using TileShape = Shape<_128, _128, _128>;
  using ClusterShape = Shape<_2, _1, _1>;
  using Cutlass3xGemm =
      cutlass_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
                      KernelSchedule, EpilogueSchedule>;
};

template <typename InType, typename OutType,
          template <typename, typename, typename> typename Epilogue>
struct sm90_fp8_config_M128 {
  // M in (64, 128]
  static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
  using KernelSchedule =
      cutlass::gemm::KernelTmaWarpSpecializedPingpongFP8FastAccum;
  using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
  using TileShape = Shape<_64, _128, _128>;
  using ClusterShape = Shape<_2, _1, _1>;
  using Cutlass3xGemm =
      cutlass_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
                      KernelSchedule, EpilogueSchedule>;
};

template <typename InType, typename OutType,
          template <typename, typename, typename> typename Epilogue>
struct sm90_fp8_config_M64 {
  // M in [1, 64]
  static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
  using KernelSchedule =
      cutlass::gemm::KernelTmaWarpSpecializedPingpongFP8FastAccum;
  using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
  using TileShape = Shape<_64, _64, _128>;
  using ClusterShape = Shape<_1, _8, _1>;

  using Cutlass3xGemm =
      cutlass_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
                      KernelSchedule, EpilogueSchedule>;
};

template <typename InType, typename OutType,
          template <typename, typename, typename> typename Epilogue>
struct sm90_int8_config_default {
  // For M > 128 and any N
  static_assert(std::is_same<InType, int8_t>());
  using KernelSchedule =
      typename cutlass::gemm::KernelTmaWarpSpecializedPingpong;
  using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
  using TileShape = Shape<_128, _128, _128>;
  using ClusterShape = Shape<_2, _1, _1>;
  using Cutlass3xGemm =
      cutlass_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
                      KernelSchedule, EpilogueSchedule>;
};

template <typename InType, typename OutType,
          template <typename, typename, typename> typename Epilogue>
struct sm90_int8_config_M128 {
  // For M in (64, 128] and any N
  static_assert(std::is_same<InType, int8_t>());
  using KernelSchedule =
      typename cutlass::gemm::KernelTmaWarpSpecializedPingpong;
  using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
  using TileShape = Shape<_64, _128, _128>;
  using ClusterShape = Shape<_2, _1, _1>;
  using Cutlass3xGemm =
      cutlass_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
                      KernelSchedule, EpilogueSchedule>;
};

template <typename InType, typename OutType,
          template <typename, typename, typename> typename Epilogue>
struct sm90_int8_config_M64 {
  // For M in (32, 64] and any N
  static_assert(std::is_same<InType, int8_t>());
  using KernelSchedule = typename cutlass::gemm::KernelTmaWarpSpecialized;
  using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
  using TileShape = Shape<_64, _64, _256>;
  using ClusterShape = Shape<_1, _1, _1>;
  using Cutlass3xGemm =
      cutlass_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
                      KernelSchedule, EpilogueSchedule>;
};

template <typename InType, typename OutType,
          template <typename, typename, typename> typename Epilogue>
struct sm90_int8_config_M32_NBig {
  // For M in [1, 32] and N >= 8192
  static_assert(std::is_same<InType, int8_t>());
  using KernelSchedule = typename cutlass::gemm::KernelTmaWarpSpecialized;
  using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
  using TileShape = Shape<_64, _128, _256>;
  using ClusterShape = Shape<_1, _4, _1>;
  using Cutlass3xGemm =
      cutlass_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
                      KernelSchedule, EpilogueSchedule>;
};

template <typename InType, typename OutType,
          template <typename, typename, typename> typename Epilogue>
struct sm90_int8_config_M32_NSmall {
  // For M in [1, 32] and N < 8192
  static_assert(std::is_same<InType, int8_t>());
  using KernelSchedule = typename cutlass::gemm::KernelTmaWarpSpecialized;
  using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
  using TileShape = Shape<_64, _64, _256>;
  using ClusterShape = Shape<_1, _8, _1>;
  using Cutlass3xGemm =
      cutlass_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
                      KernelSchedule, EpilogueSchedule>;
};

}  // namespace

template <typename InType, typename OutType,
          template <typename, typename, typename> typename Epilogue,
          typename... EpilogueArgs>
void cutlass_gemm_sm90_fp8_dispatch(torch::Tensor& out, torch::Tensor const& a,
                                    torch::Tensor const& b,
                                    EpilogueArgs&&... args) {
  static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
  TORCH_CHECK(a.dtype() == torch::kFloat8_e4m3fn);
  TORCH_CHECK(b.dtype() == torch::kFloat8_e4m3fn);

  using Cutlass3xGemmDefault =
      typename sm90_fp8_config_default<InType, OutType,
                                       Epilogue>::Cutlass3xGemm;
  using Cutlass3xGemmM64 =
      typename sm90_fp8_config_M64<InType, OutType, Epilogue>::Cutlass3xGemm;
  using Cutlass3xGemmM128 =
      typename sm90_fp8_config_M128<InType, OutType, Epilogue>::Cutlass3xGemm;

  uint32_t const m = a.size(0);
  uint32_t const mp2 =
      std::max(static_cast<uint32_t>(64), next_pow_2(m));  // next power of 2

  if (mp2 <= 64) {
    // m in [1, 64]
    return cutlass_gemm_caller<Cutlass3xGemmM64>(
        out, a, b, std::forward<EpilogueArgs>(args)...);
  } else if (mp2 <= 128) {
    // m in (64, 128]
    return cutlass_gemm_caller<Cutlass3xGemmM128>(
        out, a, b, std::forward<EpilogueArgs>(args)...);
  } else {
    // m in (128, inf)
    return cutlass_gemm_caller<Cutlass3xGemmDefault>(
        out, a, b, std::forward<EpilogueArgs>(args)...);
  }
}

template <typename InType, typename OutType,
          template <typename, typename, typename> typename Epilogue,
          typename... EpilogueArgs>
void cutlass_gemm_sm90_int8_dispatch(torch::Tensor& out, torch::Tensor const& a,
                                     torch::Tensor const& b,
                                     EpilogueArgs&&... args) {
  static_assert(std::is_same<InType, int8_t>());
  TORCH_CHECK(a.dtype() == torch::kInt8);
  TORCH_CHECK(b.dtype() == torch::kInt8);

  using Cutlass3xGemmDefault =
      typename sm90_int8_config_default<InType, OutType,
                                        Epilogue>::Cutlass3xGemm;
  using Cutlass3xGemmM128 =
      typename sm90_int8_config_M128<InType, OutType, Epilogue>::Cutlass3xGemm;
  using Cutlass3xGemmM64 =
      typename sm90_int8_config_M64<InType, OutType, Epilogue>::Cutlass3xGemm;
  using Cutlass3xGemmM32NBig =
      typename sm90_int8_config_M32_NBig<InType, OutType,
                                         Epilogue>::Cutlass3xGemm;
  using Cutlass3xGemmM32NSmall =
      typename sm90_int8_config_M32_NSmall<InType, OutType,
                                           Epilogue>::Cutlass3xGemm;

  uint32_t const n = out.size(1);
  bool const is_small_n = n < 8192;

  uint32_t const m = a.size(0);
  uint32_t const mp2 =
      std::max(static_cast<uint32_t>(32), next_pow_2(m));  // next power of 2

  if (mp2 <= 32) {
    // m in [1, 32]
    if (is_small_n) {
      return cutlass_gemm_caller<Cutlass3xGemmM32NSmall>(
          out, a, b, std::forward<EpilogueArgs>(args)...);
    } else {
      return cutlass_gemm_caller<Cutlass3xGemmM32NBig>(
          out, a, b, std::forward<EpilogueArgs>(args)...);
    }
  } else if (mp2 <= 64) {
    // m in (32, 64]
    return cutlass_gemm_caller<Cutlass3xGemmM64>(
        out, a, b, std::forward<EpilogueArgs>(args)...);
  } else if (mp2 <= 128) {
    // m in (64, 128]
    return cutlass_gemm_caller<Cutlass3xGemmM128>(
        out, a, b, std::forward<EpilogueArgs>(args)...);
  } else {
    // m in (128, inf)
    return cutlass_gemm_caller<Cutlass3xGemmDefault>(
        out, a, b, std::forward<EpilogueArgs>(args)...);
  }
}

template <template <typename, typename, typename> typename Epilogue,
          typename... EpilogueArgs>
void cutlass_scaled_mm_sm90_epilogue(torch::Tensor& out, torch::Tensor const& a,
                                     torch::Tensor const& b,
                                     EpilogueArgs&&... epilogue_args) {
  if (a.dtype() == torch::kInt8) {
    TORCH_CHECK(b.dtype() == torch::kInt8);

    if (out.dtype() == torch::kBFloat16) {
      return cutlass_gemm_sm90_int8_dispatch<int8_t, cutlass::bfloat16_t,
                                             Epilogue>(
          out, a, b, std::forward<EpilogueArgs>(epilogue_args)...);
    } else {
      TORCH_CHECK(out.dtype() == torch::kFloat16);
      return cutlass_gemm_sm90_int8_dispatch<int8_t, cutlass::half_t, Epilogue>(
          out, a, b, std::forward<EpilogueArgs>(epilogue_args)...);
    }
  } else {
    TORCH_CHECK(a.dtype() == torch::kFloat8_e4m3fn);
    TORCH_CHECK(b.dtype() == torch::kFloat8_e4m3fn);

    if (out.dtype() == torch::kBFloat16) {
      return cutlass_gemm_sm90_fp8_dispatch<cutlass::float_e4m3_t,
                                            cutlass::bfloat16_t, Epilogue>(
          out, a, b, std::forward<EpilogueArgs>(epilogue_args)...);
    } else {
      TORCH_CHECK(out.dtype() == torch::kFloat16);
      return cutlass_gemm_sm90_fp8_dispatch<cutlass::float_e4m3_t,
                                            cutlass::half_t, Epilogue>(
          out, a, b, std::forward<EpilogueArgs>(epilogue_args)...);
    }
  }
}

void cutlass_scaled_mm_sm90(torch::Tensor& c, torch::Tensor const& a,
                            torch::Tensor const& b,
                            torch::Tensor const& a_scales,
                            torch::Tensor const& b_scales,
                            c10::optional<torch::Tensor> const& bias) {
  TORCH_CHECK(a_scales.dtype() == torch::kFloat32);
  TORCH_CHECK(b_scales.dtype() == torch::kFloat32);
  if (bias) {
    TORCH_CHECK(bias->dtype() == c.dtype(),
                "currently bias dtype must match output dtype ", c.dtype());
    return cutlass_scaled_mm_sm90_epilogue<c3x::ScaledEpilogueBias>(
        c, a, b, a_scales, b_scales, *bias);
  } else {
    return cutlass_scaled_mm_sm90_epilogue<c3x::ScaledEpilogue>(
        c, a, b, a_scales, b_scales);
  }
}

void cutlass_scaled_mm_azp_sm90(torch::Tensor& out, torch::Tensor const& a,
                                torch::Tensor const& b,
                                torch::Tensor const& a_scales,
                                torch::Tensor const& b_scales,
                                torch::Tensor const& azp_adj,
                                c10::optional<torch::Tensor> const& azp,
                                c10::optional<torch::Tensor> const& bias) {
  TORCH_CHECK(a_scales.dtype() == torch::kFloat32);
  TORCH_CHECK(b_scales.dtype() == torch::kFloat32);

  if (azp) {
    return cutlass_scaled_mm_sm90_epilogue<c3x::ScaledEpilogueBiasAzpToken>(
        out, a, b, a_scales, b_scales, azp_adj, *azp, bias);
  } else {
    return cutlass_scaled_mm_sm90_epilogue<c3x::ScaledEpilogueBiasAzp>(
        out, a, b, a_scales, b_scales, azp_adj, bias);
  }
}

#endif