feat: update to include rev in kernel for reproducible symbols
#2
by
drbh
HF Staff
- opened
This view is limited to 50 files because it contains too many changes.
See the raw diff here.
- README.md +0 -3
- build.toml +7 -8
- build/{torch27-cxx11-cu118-x86_64-linux → torch25-cxx11-cu118-x86_64-linux}/activation/__init__.py +0 -0
- build/{torch26-cxx11-cu118-x86_64-linux/activation/_activation_e99cc09_dirty.abi3.so → torch25-cxx11-cu118-x86_64-linux/activation/_activation_o63kkyjirmkf4.abi3.so} +2 -2
- build/{torch27-cxx11-cu118-x86_64-linux → torch25-cxx11-cu118-x86_64-linux}/activation/_ops.py +3 -3
- build/{torch27-cxx11-cu118-x86_64-linux → torch25-cxx11-cu118-x86_64-linux}/activation/layers.py +0 -14
- build/{torch27-cxx11-cu126-x86_64-linux → torch25-cxx11-cu121-x86_64-linux}/activation/__init__.py +0 -0
- build/{torch26-cxx11-cu124-x86_64-linux/activation/_activation_e99cc09_dirty.abi3.so → torch25-cxx11-cu121-x86_64-linux/activation/_activation_vrl36m2ejer54.abi3.so} +2 -2
- build/{torch27-cxx11-cu126-x86_64-linux → torch25-cxx11-cu121-x86_64-linux}/activation/_ops.py +3 -3
- build/{torch27-cxx11-cu126-x86_64-linux → torch25-cxx11-cu121-x86_64-linux}/activation/layers.py +0 -14
- build/{torch27-cxx11-cu128-x86_64-linux → torch25-cxx11-cu124-x86_64-linux}/activation/__init__.py +0 -0
- build/{torch26-cxx11-cu126-x86_64-linux/activation/_activation_e99cc09_dirty.abi3.so → torch25-cxx11-cu124-x86_64-linux/activation/_activation_va3moa75vw7c2.abi3.so} +2 -2
- build/{torch27-cxx11-cu128-x86_64-linux → torch25-cxx11-cu124-x86_64-linux}/activation/_ops.py +3 -3
- build/{torch27-cxx11-cu128-x86_64-linux → torch25-cxx11-cu124-x86_64-linux}/activation/layers.py +0 -14
- build/torch25-cxx98-cu118-x86_64-linux/activation/__init__.py +52 -0
- build/{torch26-cxx98-cu118-x86_64-linux/activation/_activation_e99cc09_dirty.abi3.so → torch25-cxx98-cu118-x86_64-linux/activation/_activation_qr3gs3eckeig4.abi3.so} +2 -2
- build/torch25-cxx98-cu118-x86_64-linux/activation/_ops.py +9 -0
- build/torch25-cxx98-cu118-x86_64-linux/activation/layers.py +65 -0
- build/torch25-cxx98-cu121-x86_64-linux/activation/__init__.py +52 -0
- build/torch25-cxx98-cu121-x86_64-linux/activation/_activation_p7gbzt25w3zg2.abi3.so +3 -0
- build/torch25-cxx98-cu121-x86_64-linux/activation/_ops.py +9 -0
- build/torch25-cxx98-cu121-x86_64-linux/activation/layers.py +65 -0
- build/torch25-cxx98-cu124-x86_64-linux/activation/__init__.py +52 -0
- build/torch25-cxx98-cu124-x86_64-linux/activation/_activation_jg7yaigtn7wco.abi3.so +3 -0
- build/torch25-cxx98-cu124-x86_64-linux/activation/_ops.py +9 -0
- build/torch25-cxx98-cu124-x86_64-linux/activation/layers.py +65 -0
- build/torch26-cxx11-cu118-x86_64-linux/activation/_activation_ncisyrun7guwk.abi3.so +3 -0
- build/torch26-cxx11-cu118-x86_64-linux/activation/_ops.py +3 -3
- build/torch26-cxx11-cu118-x86_64-linux/activation/layers.py +0 -14
- build/torch26-cxx11-cu124-x86_64-linux/activation/_activation_ochhfvlnc3vyc.abi3.so +3 -0
- build/torch26-cxx11-cu124-x86_64-linux/activation/_ops.py +3 -3
- build/torch26-cxx11-cu124-x86_64-linux/activation/layers.py +0 -14
- build/torch26-cxx11-cu126-x86_64-linux/activation/_activation_u6vnqubnicksq.abi3.so +3 -0
- build/torch26-cxx11-cu126-x86_64-linux/activation/_ops.py +3 -3
- build/torch26-cxx11-cu126-x86_64-linux/activation/layers.py +0 -14
- build/torch26-cxx98-cu118-x86_64-linux/activation/_activation_2vn6ty3gfqfb6.abi3.so +3 -0
- build/torch26-cxx98-cu118-x86_64-linux/activation/_ops.py +3 -3
- build/torch26-cxx98-cu118-x86_64-linux/activation/layers.py +0 -14
- build/torch26-cxx98-cu124-x86_64-linux/activation/_activation_e99cc09_dirty.abi3.so +0 -3
- build/torch26-cxx98-cu124-x86_64-linux/activation/_activation_myvteedxdpqc6.abi3.so +3 -0
- build/torch26-cxx98-cu124-x86_64-linux/activation/_ops.py +3 -3
- build/torch26-cxx98-cu124-x86_64-linux/activation/layers.py +0 -14
- build/torch26-cxx98-cu126-x86_64-linux/activation/_activation_e99cc09_dirty.abi3.so +0 -3
- build/torch26-cxx98-cu126-x86_64-linux/activation/_activation_rbswus6emrhm2.abi3.so +3 -0
- build/torch26-cxx98-cu126-x86_64-linux/activation/_ops.py +3 -3
- build/torch26-cxx98-cu126-x86_64-linux/activation/layers.py +0 -14
- build/torch27-cxx11-cu118-x86_64-linux/activation/_activation_e99cc09_dirty.abi3.so +0 -3
- build/torch27-cxx11-cu126-x86_64-linux/activation/_activation_e99cc09_dirty.abi3.so +0 -3
- build/torch27-cxx11-cu128-x86_64-linux/activation/_activation_e99cc09_dirty.abi3.so +0 -3
- flake.lock +0 -168
README.md
CHANGED
@@ -2,9 +2,6 @@
|
|
2 |
tags:
|
3 |
- kernel
|
4 |
---
|
5 |
-
|
6 |
-

|
7 |
-
|
8 |
## Activation
|
9 |
|
10 |
Activation kernels from [vLLM](https://github.com/vllm-project/vllm/blob/main/csrc/activation_kernels.cu).
|
|
|
2 |
tags:
|
3 |
- kernel
|
4 |
---
|
|
|
|
|
|
|
5 |
## Activation
|
6 |
|
7 |
Activation kernels from [vLLM](https://github.com/vllm-project/vllm/blob/main/csrc/activation_kernels.cu).
|
build.toml
CHANGED
@@ -1,18 +1,17 @@
|
|
1 |
[general]
|
2 |
name = "activation"
|
3 |
-
universal = false
|
4 |
|
5 |
[torch]
|
6 |
src = [
|
7 |
-
|
8 |
-
|
9 |
]
|
10 |
|
11 |
[kernel.activation]
|
12 |
-
|
13 |
-
depends = ["torch"]
|
14 |
src = [
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
]
|
|
|
|
1 |
[general]
|
2 |
name = "activation"
|
|
|
3 |
|
4 |
[torch]
|
5 |
src = [
|
6 |
+
"torch-ext/torch_binding.cpp",
|
7 |
+
"torch-ext/torch_binding.h"
|
8 |
]
|
9 |
|
10 |
[kernel.activation]
|
11 |
+
cuda-capabilities = [ "7.0", "7.2", "7.5", "8.0", "8.6", "8.7", "8.9", "9.0" ]
|
|
|
12 |
src = [
|
13 |
+
"activation/activation_kernels.cu",
|
14 |
+
"activation/cuda_compat.h",
|
15 |
+
"activation/dispatch_utils.h",
|
16 |
]
|
17 |
+
depends = [ "torch" ]
|
build/{torch27-cxx11-cu118-x86_64-linux → torch25-cxx11-cu118-x86_64-linux}/activation/__init__.py
RENAMED
File without changes
|
build/{torch26-cxx11-cu118-x86_64-linux/activation/_activation_e99cc09_dirty.abi3.so → torch25-cxx11-cu118-x86_64-linux/activation/_activation_o63kkyjirmkf4.abi3.so}
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d50cdabfbed1df74e921ac34ff00bca0555977b14ef8082ddae7b1f30985a494
|
3 |
+
size 2370160
|
build/{torch27-cxx11-cu118-x86_64-linux → torch25-cxx11-cu118-x86_64-linux}/activation/_ops.py
RENAMED
@@ -1,9 +1,9 @@
|
|
1 |
import torch
|
2 |
-
from . import
|
3 |
-
ops = torch.ops.
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
-
return f"
|
|
|
1 |
import torch
|
2 |
+
from . import _activation_o63kkyjirmkf4
|
3 |
+
ops = torch.ops._activation_o63kkyjirmkf4
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
+
return f"_activation_o63kkyjirmkf4::{op_name}"
|
build/{torch27-cxx11-cu118-x86_64-linux → torch25-cxx11-cu118-x86_64-linux}/activation/layers.py
RENAMED
@@ -5,8 +5,6 @@ from ._ops import ops
|
|
5 |
|
6 |
|
7 |
class SiluAndMul(nn.Module):
|
8 |
-
can_torch_compile: bool = True
|
9 |
-
|
10 |
def forward(self, x: torch.Tensor):
|
11 |
d = x.shape[-1] // 2
|
12 |
output_shape = x.shape[:-1] + (d,)
|
@@ -16,8 +14,6 @@ class SiluAndMul(nn.Module):
|
|
16 |
|
17 |
|
18 |
class GeluAndMul(nn.Module):
|
19 |
-
can_torch_compile: bool = True
|
20 |
-
|
21 |
def forward(self, x: torch.Tensor):
|
22 |
d = x.shape[-1] // 2
|
23 |
output_shape = x.shape[:-1] + (d,)
|
@@ -27,8 +23,6 @@ class GeluAndMul(nn.Module):
|
|
27 |
|
28 |
|
29 |
class GeluTanhAndMul(nn.Module):
|
30 |
-
can_torch_compile: bool = True
|
31 |
-
|
32 |
def forward(self, x: torch.Tensor):
|
33 |
d = x.shape[-1] // 2
|
34 |
output_shape = x.shape[:-1] + (d,)
|
@@ -38,8 +32,6 @@ class GeluTanhAndMul(nn.Module):
|
|
38 |
|
39 |
|
40 |
class FatreluAndMul(nn.Module):
|
41 |
-
can_torch_compile: bool = True
|
42 |
-
|
43 |
def __init__(self, threshold: float = 0.0):
|
44 |
super().__init__()
|
45 |
self.threshold = threshold
|
@@ -53,8 +45,6 @@ class FatreluAndMul(nn.Module):
|
|
53 |
|
54 |
|
55 |
class FastGELU(nn.Module):
|
56 |
-
can_torch_compile: bool = True
|
57 |
-
|
58 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
59 |
out = torch.empty_like(x)
|
60 |
ops.gelu_fast(out, x)
|
@@ -62,8 +52,6 @@ class FastGELU(nn.Module):
|
|
62 |
|
63 |
|
64 |
class NewGELU(nn.Module):
|
65 |
-
can_torch_compile: bool = True
|
66 |
-
|
67 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
68 |
out = torch.empty_like(x)
|
69 |
ops.gelu_new(out, x)
|
@@ -71,8 +59,6 @@ class NewGELU(nn.Module):
|
|
71 |
|
72 |
|
73 |
class QuickGELU(nn.Module):
|
74 |
-
can_torch_compile: bool = True
|
75 |
-
|
76 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
77 |
out = torch.empty_like(x)
|
78 |
ops.gelu_quick(out, x)
|
|
|
5 |
|
6 |
|
7 |
class SiluAndMul(nn.Module):
|
|
|
|
|
8 |
def forward(self, x: torch.Tensor):
|
9 |
d = x.shape[-1] // 2
|
10 |
output_shape = x.shape[:-1] + (d,)
|
|
|
14 |
|
15 |
|
16 |
class GeluAndMul(nn.Module):
|
|
|
|
|
17 |
def forward(self, x: torch.Tensor):
|
18 |
d = x.shape[-1] // 2
|
19 |
output_shape = x.shape[:-1] + (d,)
|
|
|
23 |
|
24 |
|
25 |
class GeluTanhAndMul(nn.Module):
|
|
|
|
|
26 |
def forward(self, x: torch.Tensor):
|
27 |
d = x.shape[-1] // 2
|
28 |
output_shape = x.shape[:-1] + (d,)
|
|
|
32 |
|
33 |
|
34 |
class FatreluAndMul(nn.Module):
|
|
|
|
|
35 |
def __init__(self, threshold: float = 0.0):
|
36 |
super().__init__()
|
37 |
self.threshold = threshold
|
|
|
45 |
|
46 |
|
47 |
class FastGELU(nn.Module):
|
|
|
|
|
48 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
49 |
out = torch.empty_like(x)
|
50 |
ops.gelu_fast(out, x)
|
|
|
52 |
|
53 |
|
54 |
class NewGELU(nn.Module):
|
|
|
|
|
55 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
56 |
out = torch.empty_like(x)
|
57 |
ops.gelu_new(out, x)
|
|
|
59 |
|
60 |
|
61 |
class QuickGELU(nn.Module):
|
|
|
|
|
62 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
63 |
out = torch.empty_like(x)
|
64 |
ops.gelu_quick(out, x)
|
build/{torch27-cxx11-cu126-x86_64-linux → torch25-cxx11-cu121-x86_64-linux}/activation/__init__.py
RENAMED
File without changes
|
build/{torch26-cxx11-cu124-x86_64-linux/activation/_activation_e99cc09_dirty.abi3.so → torch25-cxx11-cu121-x86_64-linux/activation/_activation_vrl36m2ejer54.abi3.so}
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2bd0709ef09c8f0c18d1dc4a36c8096c59459bece61f5f5dbea95d1e73f54d44
|
3 |
+
size 2393264
|
build/{torch27-cxx11-cu126-x86_64-linux → torch25-cxx11-cu121-x86_64-linux}/activation/_ops.py
RENAMED
@@ -1,9 +1,9 @@
|
|
1 |
import torch
|
2 |
-
from . import
|
3 |
-
ops = torch.ops.
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
-
return f"
|
|
|
1 |
import torch
|
2 |
+
from . import _activation_vrl36m2ejer54
|
3 |
+
ops = torch.ops._activation_vrl36m2ejer54
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
+
return f"_activation_vrl36m2ejer54::{op_name}"
|
build/{torch27-cxx11-cu126-x86_64-linux → torch25-cxx11-cu121-x86_64-linux}/activation/layers.py
RENAMED
@@ -5,8 +5,6 @@ from ._ops import ops
|
|
5 |
|
6 |
|
7 |
class SiluAndMul(nn.Module):
|
8 |
-
can_torch_compile: bool = True
|
9 |
-
|
10 |
def forward(self, x: torch.Tensor):
|
11 |
d = x.shape[-1] // 2
|
12 |
output_shape = x.shape[:-1] + (d,)
|
@@ -16,8 +14,6 @@ class SiluAndMul(nn.Module):
|
|
16 |
|
17 |
|
18 |
class GeluAndMul(nn.Module):
|
19 |
-
can_torch_compile: bool = True
|
20 |
-
|
21 |
def forward(self, x: torch.Tensor):
|
22 |
d = x.shape[-1] // 2
|
23 |
output_shape = x.shape[:-1] + (d,)
|
@@ -27,8 +23,6 @@ class GeluAndMul(nn.Module):
|
|
27 |
|
28 |
|
29 |
class GeluTanhAndMul(nn.Module):
|
30 |
-
can_torch_compile: bool = True
|
31 |
-
|
32 |
def forward(self, x: torch.Tensor):
|
33 |
d = x.shape[-1] // 2
|
34 |
output_shape = x.shape[:-1] + (d,)
|
@@ -38,8 +32,6 @@ class GeluTanhAndMul(nn.Module):
|
|
38 |
|
39 |
|
40 |
class FatreluAndMul(nn.Module):
|
41 |
-
can_torch_compile: bool = True
|
42 |
-
|
43 |
def __init__(self, threshold: float = 0.0):
|
44 |
super().__init__()
|
45 |
self.threshold = threshold
|
@@ -53,8 +45,6 @@ class FatreluAndMul(nn.Module):
|
|
53 |
|
54 |
|
55 |
class FastGELU(nn.Module):
|
56 |
-
can_torch_compile: bool = True
|
57 |
-
|
58 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
59 |
out = torch.empty_like(x)
|
60 |
ops.gelu_fast(out, x)
|
@@ -62,8 +52,6 @@ class FastGELU(nn.Module):
|
|
62 |
|
63 |
|
64 |
class NewGELU(nn.Module):
|
65 |
-
can_torch_compile: bool = True
|
66 |
-
|
67 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
68 |
out = torch.empty_like(x)
|
69 |
ops.gelu_new(out, x)
|
@@ -71,8 +59,6 @@ class NewGELU(nn.Module):
|
|
71 |
|
72 |
|
73 |
class QuickGELU(nn.Module):
|
74 |
-
can_torch_compile: bool = True
|
75 |
-
|
76 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
77 |
out = torch.empty_like(x)
|
78 |
ops.gelu_quick(out, x)
|
|
|
5 |
|
6 |
|
7 |
class SiluAndMul(nn.Module):
|
|
|
|
|
8 |
def forward(self, x: torch.Tensor):
|
9 |
d = x.shape[-1] // 2
|
10 |
output_shape = x.shape[:-1] + (d,)
|
|
|
14 |
|
15 |
|
16 |
class GeluAndMul(nn.Module):
|
|
|
|
|
17 |
def forward(self, x: torch.Tensor):
|
18 |
d = x.shape[-1] // 2
|
19 |
output_shape = x.shape[:-1] + (d,)
|
|
|
23 |
|
24 |
|
25 |
class GeluTanhAndMul(nn.Module):
|
|
|
|
|
26 |
def forward(self, x: torch.Tensor):
|
27 |
d = x.shape[-1] // 2
|
28 |
output_shape = x.shape[:-1] + (d,)
|
|
|
32 |
|
33 |
|
34 |
class FatreluAndMul(nn.Module):
|
|
|
|
|
35 |
def __init__(self, threshold: float = 0.0):
|
36 |
super().__init__()
|
37 |
self.threshold = threshold
|
|
|
45 |
|
46 |
|
47 |
class FastGELU(nn.Module):
|
|
|
|
|
48 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
49 |
out = torch.empty_like(x)
|
50 |
ops.gelu_fast(out, x)
|
|
|
52 |
|
53 |
|
54 |
class NewGELU(nn.Module):
|
|
|
|
|
55 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
56 |
out = torch.empty_like(x)
|
57 |
ops.gelu_new(out, x)
|
|
|
59 |
|
60 |
|
61 |
class QuickGELU(nn.Module):
|
|
|
|
|
62 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
63 |
out = torch.empty_like(x)
|
64 |
ops.gelu_quick(out, x)
|
build/{torch27-cxx11-cu128-x86_64-linux → torch25-cxx11-cu124-x86_64-linux}/activation/__init__.py
RENAMED
File without changes
|
build/{torch26-cxx11-cu126-x86_64-linux/activation/_activation_e99cc09_dirty.abi3.so → torch25-cxx11-cu124-x86_64-linux/activation/_activation_va3moa75vw7c2.abi3.so}
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8353447f64e7d2df1a6a341d9c53bced53abef267f079923ae774170d0d57c53
|
3 |
+
size 2427936
|
build/{torch27-cxx11-cu128-x86_64-linux → torch25-cxx11-cu124-x86_64-linux}/activation/_ops.py
RENAMED
@@ -1,9 +1,9 @@
|
|
1 |
import torch
|
2 |
-
from . import
|
3 |
-
ops = torch.ops.
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
-
return f"
|
|
|
1 |
import torch
|
2 |
+
from . import _activation_va3moa75vw7c2
|
3 |
+
ops = torch.ops._activation_va3moa75vw7c2
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
+
return f"_activation_va3moa75vw7c2::{op_name}"
|
build/{torch27-cxx11-cu128-x86_64-linux → torch25-cxx11-cu124-x86_64-linux}/activation/layers.py
RENAMED
@@ -5,8 +5,6 @@ from ._ops import ops
|
|
5 |
|
6 |
|
7 |
class SiluAndMul(nn.Module):
|
8 |
-
can_torch_compile: bool = True
|
9 |
-
|
10 |
def forward(self, x: torch.Tensor):
|
11 |
d = x.shape[-1] // 2
|
12 |
output_shape = x.shape[:-1] + (d,)
|
@@ -16,8 +14,6 @@ class SiluAndMul(nn.Module):
|
|
16 |
|
17 |
|
18 |
class GeluAndMul(nn.Module):
|
19 |
-
can_torch_compile: bool = True
|
20 |
-
|
21 |
def forward(self, x: torch.Tensor):
|
22 |
d = x.shape[-1] // 2
|
23 |
output_shape = x.shape[:-1] + (d,)
|
@@ -27,8 +23,6 @@ class GeluAndMul(nn.Module):
|
|
27 |
|
28 |
|
29 |
class GeluTanhAndMul(nn.Module):
|
30 |
-
can_torch_compile: bool = True
|
31 |
-
|
32 |
def forward(self, x: torch.Tensor):
|
33 |
d = x.shape[-1] // 2
|
34 |
output_shape = x.shape[:-1] + (d,)
|
@@ -38,8 +32,6 @@ class GeluTanhAndMul(nn.Module):
|
|
38 |
|
39 |
|
40 |
class FatreluAndMul(nn.Module):
|
41 |
-
can_torch_compile: bool = True
|
42 |
-
|
43 |
def __init__(self, threshold: float = 0.0):
|
44 |
super().__init__()
|
45 |
self.threshold = threshold
|
@@ -53,8 +45,6 @@ class FatreluAndMul(nn.Module):
|
|
53 |
|
54 |
|
55 |
class FastGELU(nn.Module):
|
56 |
-
can_torch_compile: bool = True
|
57 |
-
|
58 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
59 |
out = torch.empty_like(x)
|
60 |
ops.gelu_fast(out, x)
|
@@ -62,8 +52,6 @@ class FastGELU(nn.Module):
|
|
62 |
|
63 |
|
64 |
class NewGELU(nn.Module):
|
65 |
-
can_torch_compile: bool = True
|
66 |
-
|
67 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
68 |
out = torch.empty_like(x)
|
69 |
ops.gelu_new(out, x)
|
@@ -71,8 +59,6 @@ class NewGELU(nn.Module):
|
|
71 |
|
72 |
|
73 |
class QuickGELU(nn.Module):
|
74 |
-
can_torch_compile: bool = True
|
75 |
-
|
76 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
77 |
out = torch.empty_like(x)
|
78 |
ops.gelu_quick(out, x)
|
|
|
5 |
|
6 |
|
7 |
class SiluAndMul(nn.Module):
|
|
|
|
|
8 |
def forward(self, x: torch.Tensor):
|
9 |
d = x.shape[-1] // 2
|
10 |
output_shape = x.shape[:-1] + (d,)
|
|
|
14 |
|
15 |
|
16 |
class GeluAndMul(nn.Module):
|
|
|
|
|
17 |
def forward(self, x: torch.Tensor):
|
18 |
d = x.shape[-1] // 2
|
19 |
output_shape = x.shape[:-1] + (d,)
|
|
|
23 |
|
24 |
|
25 |
class GeluTanhAndMul(nn.Module):
|
|
|
|
|
26 |
def forward(self, x: torch.Tensor):
|
27 |
d = x.shape[-1] // 2
|
28 |
output_shape = x.shape[:-1] + (d,)
|
|
|
32 |
|
33 |
|
34 |
class FatreluAndMul(nn.Module):
|
|
|
|
|
35 |
def __init__(self, threshold: float = 0.0):
|
36 |
super().__init__()
|
37 |
self.threshold = threshold
|
|
|
45 |
|
46 |
|
47 |
class FastGELU(nn.Module):
|
|
|
|
|
48 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
49 |
out = torch.empty_like(x)
|
50 |
ops.gelu_fast(out, x)
|
|
|
52 |
|
53 |
|
54 |
class NewGELU(nn.Module):
|
|
|
|
|
55 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
56 |
out = torch.empty_like(x)
|
57 |
ops.gelu_new(out, x)
|
|
|
59 |
|
60 |
|
61 |
class QuickGELU(nn.Module):
|
|
|
|
|
62 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
63 |
out = torch.empty_like(x)
|
64 |
ops.gelu_quick(out, x)
|
build/torch25-cxx98-cu118-x86_64-linux/activation/__init__.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
from ._ops import ops
|
4 |
+
|
5 |
+
from . import layers
|
6 |
+
|
7 |
+
|
8 |
+
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
9 |
+
ops.silu_and_mul(out, x)
|
10 |
+
return out
|
11 |
+
|
12 |
+
|
13 |
+
def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
14 |
+
ops.gelu_and_mul(out, x)
|
15 |
+
return out
|
16 |
+
|
17 |
+
|
18 |
+
def gelu_tanh_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
19 |
+
ops.gelu_tanh_and_mul(out, x)
|
20 |
+
return out
|
21 |
+
|
22 |
+
|
23 |
+
def fatrelu_and_mul(out: torch.Tensor, x: torch.Tensor, threshold: float = 0.0) -> None:
|
24 |
+
ops.fatrelu_and_mul(out, x, threshold)
|
25 |
+
return out
|
26 |
+
|
27 |
+
|
28 |
+
def gelu_fast(out: torch.Tensor, x: torch.Tensor) -> None:
|
29 |
+
ops.gelu_fast(out, x)
|
30 |
+
return out
|
31 |
+
|
32 |
+
|
33 |
+
def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
|
34 |
+
ops.gelu_new(out, x)
|
35 |
+
return out
|
36 |
+
|
37 |
+
|
38 |
+
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
39 |
+
ops.gelu_quick(out, x)
|
40 |
+
return out
|
41 |
+
|
42 |
+
|
43 |
+
__all__ = [
|
44 |
+
"silu_and_mul",
|
45 |
+
"gelu_and_mul",
|
46 |
+
"gelu_tanh_and_mul",
|
47 |
+
"fatrelu_and_mul",
|
48 |
+
"gelu_fast",
|
49 |
+
"gelu_new",
|
50 |
+
"gelu_quick",
|
51 |
+
"layers",
|
52 |
+
]
|
build/{torch26-cxx98-cu118-x86_64-linux/activation/_activation_e99cc09_dirty.abi3.so → torch25-cxx98-cu118-x86_64-linux/activation/_activation_qr3gs3eckeig4.abi3.so}
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df184a6315118d787a1bd6b435cb45f1ca7828445a1f1c0e55c57645cfbba43a
|
3 |
+
size 2362600
|
build/torch25-cxx98-cu118-x86_64-linux/activation/_ops.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from . import _activation_qr3gs3eckeig4
|
3 |
+
ops = torch.ops._activation_qr3gs3eckeig4
|
4 |
+
|
5 |
+
def add_op_namespace_prefix(op_name: str):
|
6 |
+
"""
|
7 |
+
Prefix op by namespace.
|
8 |
+
"""
|
9 |
+
return f"_activation_qr3gs3eckeig4::{op_name}"
|
build/torch25-cxx98-cu118-x86_64-linux/activation/layers.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
from ._ops import ops
|
5 |
+
|
6 |
+
|
7 |
+
class SiluAndMul(nn.Module):
|
8 |
+
def forward(self, x: torch.Tensor):
|
9 |
+
d = x.shape[-1] // 2
|
10 |
+
output_shape = x.shape[:-1] + (d,)
|
11 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
12 |
+
ops.silu_and_mul(out, x)
|
13 |
+
return out
|
14 |
+
|
15 |
+
|
16 |
+
class GeluAndMul(nn.Module):
|
17 |
+
def forward(self, x: torch.Tensor):
|
18 |
+
d = x.shape[-1] // 2
|
19 |
+
output_shape = x.shape[:-1] + (d,)
|
20 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
21 |
+
ops.gelu_and_mul(out, x)
|
22 |
+
return out
|
23 |
+
|
24 |
+
|
25 |
+
class GeluTanhAndMul(nn.Module):
|
26 |
+
def forward(self, x: torch.Tensor):
|
27 |
+
d = x.shape[-1] // 2
|
28 |
+
output_shape = x.shape[:-1] + (d,)
|
29 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
30 |
+
ops.gelu_tanh_and_mul(out, x)
|
31 |
+
return out
|
32 |
+
|
33 |
+
|
34 |
+
class FatreluAndMul(nn.Module):
|
35 |
+
def __init__(self, threshold: float = 0.0):
|
36 |
+
super().__init__()
|
37 |
+
self.threshold = threshold
|
38 |
+
|
39 |
+
def forward(self, x: torch.Tensor):
|
40 |
+
d = x.shape[-1] // 2
|
41 |
+
output_shape = x.shape[:-1] + (d,)
|
42 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
43 |
+
ops.fatrelu_and_mul(out, x, self.threshold)
|
44 |
+
return out
|
45 |
+
|
46 |
+
|
47 |
+
class FastGELU(nn.Module):
|
48 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
49 |
+
out = torch.empty_like(x)
|
50 |
+
ops.gelu_fast(out, x)
|
51 |
+
return out
|
52 |
+
|
53 |
+
|
54 |
+
class NewGELU(nn.Module):
|
55 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
56 |
+
out = torch.empty_like(x)
|
57 |
+
ops.gelu_new(out, x)
|
58 |
+
return out
|
59 |
+
|
60 |
+
|
61 |
+
class QuickGELU(nn.Module):
|
62 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
63 |
+
out = torch.empty_like(x)
|
64 |
+
ops.gelu_quick(out, x)
|
65 |
+
return out
|
build/torch25-cxx98-cu121-x86_64-linux/activation/__init__.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
from ._ops import ops
|
4 |
+
|
5 |
+
from . import layers
|
6 |
+
|
7 |
+
|
8 |
+
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
9 |
+
ops.silu_and_mul(out, x)
|
10 |
+
return out
|
11 |
+
|
12 |
+
|
13 |
+
def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
14 |
+
ops.gelu_and_mul(out, x)
|
15 |
+
return out
|
16 |
+
|
17 |
+
|
18 |
+
def gelu_tanh_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
19 |
+
ops.gelu_tanh_and_mul(out, x)
|
20 |
+
return out
|
21 |
+
|
22 |
+
|
23 |
+
def fatrelu_and_mul(out: torch.Tensor, x: torch.Tensor, threshold: float = 0.0) -> None:
|
24 |
+
ops.fatrelu_and_mul(out, x, threshold)
|
25 |
+
return out
|
26 |
+
|
27 |
+
|
28 |
+
def gelu_fast(out: torch.Tensor, x: torch.Tensor) -> None:
|
29 |
+
ops.gelu_fast(out, x)
|
30 |
+
return out
|
31 |
+
|
32 |
+
|
33 |
+
def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
|
34 |
+
ops.gelu_new(out, x)
|
35 |
+
return out
|
36 |
+
|
37 |
+
|
38 |
+
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
39 |
+
ops.gelu_quick(out, x)
|
40 |
+
return out
|
41 |
+
|
42 |
+
|
43 |
+
__all__ = [
|
44 |
+
"silu_and_mul",
|
45 |
+
"gelu_and_mul",
|
46 |
+
"gelu_tanh_and_mul",
|
47 |
+
"fatrelu_and_mul",
|
48 |
+
"gelu_fast",
|
49 |
+
"gelu_new",
|
50 |
+
"gelu_quick",
|
51 |
+
"layers",
|
52 |
+
]
|
build/torch25-cxx98-cu121-x86_64-linux/activation/_activation_p7gbzt25w3zg2.abi3.so
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ccb13cfc2e45cf483e8b9f77f1760f28b48bcf185508d51b32d45bc759c4e8bb
|
3 |
+
size 2385440
|
build/torch25-cxx98-cu121-x86_64-linux/activation/_ops.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from . import _activation_p7gbzt25w3zg2
|
3 |
+
ops = torch.ops._activation_p7gbzt25w3zg2
|
4 |
+
|
5 |
+
def add_op_namespace_prefix(op_name: str):
|
6 |
+
"""
|
7 |
+
Prefix op by namespace.
|
8 |
+
"""
|
9 |
+
return f"_activation_p7gbzt25w3zg2::{op_name}"
|
build/torch25-cxx98-cu121-x86_64-linux/activation/layers.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
from ._ops import ops
|
5 |
+
|
6 |
+
|
7 |
+
class SiluAndMul(nn.Module):
|
8 |
+
def forward(self, x: torch.Tensor):
|
9 |
+
d = x.shape[-1] // 2
|
10 |
+
output_shape = x.shape[:-1] + (d,)
|
11 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
12 |
+
ops.silu_and_mul(out, x)
|
13 |
+
return out
|
14 |
+
|
15 |
+
|
16 |
+
class GeluAndMul(nn.Module):
|
17 |
+
def forward(self, x: torch.Tensor):
|
18 |
+
d = x.shape[-1] // 2
|
19 |
+
output_shape = x.shape[:-1] + (d,)
|
20 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
21 |
+
ops.gelu_and_mul(out, x)
|
22 |
+
return out
|
23 |
+
|
24 |
+
|
25 |
+
class GeluTanhAndMul(nn.Module):
|
26 |
+
def forward(self, x: torch.Tensor):
|
27 |
+
d = x.shape[-1] // 2
|
28 |
+
output_shape = x.shape[:-1] + (d,)
|
29 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
30 |
+
ops.gelu_tanh_and_mul(out, x)
|
31 |
+
return out
|
32 |
+
|
33 |
+
|
34 |
+
class FatreluAndMul(nn.Module):
|
35 |
+
def __init__(self, threshold: float = 0.0):
|
36 |
+
super().__init__()
|
37 |
+
self.threshold = threshold
|
38 |
+
|
39 |
+
def forward(self, x: torch.Tensor):
|
40 |
+
d = x.shape[-1] // 2
|
41 |
+
output_shape = x.shape[:-1] + (d,)
|
42 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
43 |
+
ops.fatrelu_and_mul(out, x, self.threshold)
|
44 |
+
return out
|
45 |
+
|
46 |
+
|
47 |
+
class FastGELU(nn.Module):
|
48 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
49 |
+
out = torch.empty_like(x)
|
50 |
+
ops.gelu_fast(out, x)
|
51 |
+
return out
|
52 |
+
|
53 |
+
|
54 |
+
class NewGELU(nn.Module):
|
55 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
56 |
+
out = torch.empty_like(x)
|
57 |
+
ops.gelu_new(out, x)
|
58 |
+
return out
|
59 |
+
|
60 |
+
|
61 |
+
class QuickGELU(nn.Module):
|
62 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
63 |
+
out = torch.empty_like(x)
|
64 |
+
ops.gelu_quick(out, x)
|
65 |
+
return out
|
build/torch25-cxx98-cu124-x86_64-linux/activation/__init__.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
from ._ops import ops
|
4 |
+
|
5 |
+
from . import layers
|
6 |
+
|
7 |
+
|
8 |
+
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
9 |
+
ops.silu_and_mul(out, x)
|
10 |
+
return out
|
11 |
+
|
12 |
+
|
13 |
+
def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
14 |
+
ops.gelu_and_mul(out, x)
|
15 |
+
return out
|
16 |
+
|
17 |
+
|
18 |
+
def gelu_tanh_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
19 |
+
ops.gelu_tanh_and_mul(out, x)
|
20 |
+
return out
|
21 |
+
|
22 |
+
|
23 |
+
def fatrelu_and_mul(out: torch.Tensor, x: torch.Tensor, threshold: float = 0.0) -> None:
|
24 |
+
ops.fatrelu_and_mul(out, x, threshold)
|
25 |
+
return out
|
26 |
+
|
27 |
+
|
28 |
+
def gelu_fast(out: torch.Tensor, x: torch.Tensor) -> None:
|
29 |
+
ops.gelu_fast(out, x)
|
30 |
+
return out
|
31 |
+
|
32 |
+
|
33 |
+
def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
|
34 |
+
ops.gelu_new(out, x)
|
35 |
+
return out
|
36 |
+
|
37 |
+
|
38 |
+
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
39 |
+
ops.gelu_quick(out, x)
|
40 |
+
return out
|
41 |
+
|
42 |
+
|
43 |
+
__all__ = [
|
44 |
+
"silu_and_mul",
|
45 |
+
"gelu_and_mul",
|
46 |
+
"gelu_tanh_and_mul",
|
47 |
+
"fatrelu_and_mul",
|
48 |
+
"gelu_fast",
|
49 |
+
"gelu_new",
|
50 |
+
"gelu_quick",
|
51 |
+
"layers",
|
52 |
+
]
|
build/torch25-cxx98-cu124-x86_64-linux/activation/_activation_jg7yaigtn7wco.abi3.so
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4f8048853e8cb06e8574a9a9497800d2be438f7989d79f44dcf2e0ced38a75a9
|
3 |
+
size 2420192
|
build/torch25-cxx98-cu124-x86_64-linux/activation/_ops.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from . import _activation_jg7yaigtn7wco
|
3 |
+
ops = torch.ops._activation_jg7yaigtn7wco
|
4 |
+
|
5 |
+
def add_op_namespace_prefix(op_name: str):
|
6 |
+
"""
|
7 |
+
Prefix op by namespace.
|
8 |
+
"""
|
9 |
+
return f"_activation_jg7yaigtn7wco::{op_name}"
|
build/torch25-cxx98-cu124-x86_64-linux/activation/layers.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
from ._ops import ops
|
5 |
+
|
6 |
+
|
7 |
+
class SiluAndMul(nn.Module):
|
8 |
+
def forward(self, x: torch.Tensor):
|
9 |
+
d = x.shape[-1] // 2
|
10 |
+
output_shape = x.shape[:-1] + (d,)
|
11 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
12 |
+
ops.silu_and_mul(out, x)
|
13 |
+
return out
|
14 |
+
|
15 |
+
|
16 |
+
class GeluAndMul(nn.Module):
|
17 |
+
def forward(self, x: torch.Tensor):
|
18 |
+
d = x.shape[-1] // 2
|
19 |
+
output_shape = x.shape[:-1] + (d,)
|
20 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
21 |
+
ops.gelu_and_mul(out, x)
|
22 |
+
return out
|
23 |
+
|
24 |
+
|
25 |
+
class GeluTanhAndMul(nn.Module):
|
26 |
+
def forward(self, x: torch.Tensor):
|
27 |
+
d = x.shape[-1] // 2
|
28 |
+
output_shape = x.shape[:-1] + (d,)
|
29 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
30 |
+
ops.gelu_tanh_and_mul(out, x)
|
31 |
+
return out
|
32 |
+
|
33 |
+
|
34 |
+
class FatreluAndMul(nn.Module):
|
35 |
+
def __init__(self, threshold: float = 0.0):
|
36 |
+
super().__init__()
|
37 |
+
self.threshold = threshold
|
38 |
+
|
39 |
+
def forward(self, x: torch.Tensor):
|
40 |
+
d = x.shape[-1] // 2
|
41 |
+
output_shape = x.shape[:-1] + (d,)
|
42 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
43 |
+
ops.fatrelu_and_mul(out, x, self.threshold)
|
44 |
+
return out
|
45 |
+
|
46 |
+
|
47 |
+
class FastGELU(nn.Module):
|
48 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
49 |
+
out = torch.empty_like(x)
|
50 |
+
ops.gelu_fast(out, x)
|
51 |
+
return out
|
52 |
+
|
53 |
+
|
54 |
+
class NewGELU(nn.Module):
|
55 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
56 |
+
out = torch.empty_like(x)
|
57 |
+
ops.gelu_new(out, x)
|
58 |
+
return out
|
59 |
+
|
60 |
+
|
61 |
+
class QuickGELU(nn.Module):
|
62 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
63 |
+
out = torch.empty_like(x)
|
64 |
+
ops.gelu_quick(out, x)
|
65 |
+
return out
|
build/torch26-cxx11-cu118-x86_64-linux/activation/_activation_ncisyrun7guwk.abi3.so
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cde5439e78ba0e1aaa1937d798b214b46d38cbab8e4384b93a22239fed1a4dd4
|
3 |
+
size 2370264
|
build/torch26-cxx11-cu118-x86_64-linux/activation/_ops.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
import torch
|
2 |
-
from . import
|
3 |
-
ops = torch.ops.
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
-
return f"
|
|
|
1 |
import torch
|
2 |
+
from . import _activation_ncisyrun7guwk
|
3 |
+
ops = torch.ops._activation_ncisyrun7guwk
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
+
return f"_activation_ncisyrun7guwk::{op_name}"
|
build/torch26-cxx11-cu118-x86_64-linux/activation/layers.py
CHANGED
@@ -5,8 +5,6 @@ from ._ops import ops
|
|
5 |
|
6 |
|
7 |
class SiluAndMul(nn.Module):
|
8 |
-
can_torch_compile: bool = True
|
9 |
-
|
10 |
def forward(self, x: torch.Tensor):
|
11 |
d = x.shape[-1] // 2
|
12 |
output_shape = x.shape[:-1] + (d,)
|
@@ -16,8 +14,6 @@ class SiluAndMul(nn.Module):
|
|
16 |
|
17 |
|
18 |
class GeluAndMul(nn.Module):
|
19 |
-
can_torch_compile: bool = True
|
20 |
-
|
21 |
def forward(self, x: torch.Tensor):
|
22 |
d = x.shape[-1] // 2
|
23 |
output_shape = x.shape[:-1] + (d,)
|
@@ -27,8 +23,6 @@ class GeluAndMul(nn.Module):
|
|
27 |
|
28 |
|
29 |
class GeluTanhAndMul(nn.Module):
|
30 |
-
can_torch_compile: bool = True
|
31 |
-
|
32 |
def forward(self, x: torch.Tensor):
|
33 |
d = x.shape[-1] // 2
|
34 |
output_shape = x.shape[:-1] + (d,)
|
@@ -38,8 +32,6 @@ class GeluTanhAndMul(nn.Module):
|
|
38 |
|
39 |
|
40 |
class FatreluAndMul(nn.Module):
|
41 |
-
can_torch_compile: bool = True
|
42 |
-
|
43 |
def __init__(self, threshold: float = 0.0):
|
44 |
super().__init__()
|
45 |
self.threshold = threshold
|
@@ -53,8 +45,6 @@ class FatreluAndMul(nn.Module):
|
|
53 |
|
54 |
|
55 |
class FastGELU(nn.Module):
|
56 |
-
can_torch_compile: bool = True
|
57 |
-
|
58 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
59 |
out = torch.empty_like(x)
|
60 |
ops.gelu_fast(out, x)
|
@@ -62,8 +52,6 @@ class FastGELU(nn.Module):
|
|
62 |
|
63 |
|
64 |
class NewGELU(nn.Module):
|
65 |
-
can_torch_compile: bool = True
|
66 |
-
|
67 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
68 |
out = torch.empty_like(x)
|
69 |
ops.gelu_new(out, x)
|
@@ -71,8 +59,6 @@ class NewGELU(nn.Module):
|
|
71 |
|
72 |
|
73 |
class QuickGELU(nn.Module):
|
74 |
-
can_torch_compile: bool = True
|
75 |
-
|
76 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
77 |
out = torch.empty_like(x)
|
78 |
ops.gelu_quick(out, x)
|
|
|
5 |
|
6 |
|
7 |
class SiluAndMul(nn.Module):
|
|
|
|
|
8 |
def forward(self, x: torch.Tensor):
|
9 |
d = x.shape[-1] // 2
|
10 |
output_shape = x.shape[:-1] + (d,)
|
|
|
14 |
|
15 |
|
16 |
class GeluAndMul(nn.Module):
|
|
|
|
|
17 |
def forward(self, x: torch.Tensor):
|
18 |
d = x.shape[-1] // 2
|
19 |
output_shape = x.shape[:-1] + (d,)
|
|
|
23 |
|
24 |
|
25 |
class GeluTanhAndMul(nn.Module):
|
|
|
|
|
26 |
def forward(self, x: torch.Tensor):
|
27 |
d = x.shape[-1] // 2
|
28 |
output_shape = x.shape[:-1] + (d,)
|
|
|
32 |
|
33 |
|
34 |
class FatreluAndMul(nn.Module):
|
|
|
|
|
35 |
def __init__(self, threshold: float = 0.0):
|
36 |
super().__init__()
|
37 |
self.threshold = threshold
|
|
|
45 |
|
46 |
|
47 |
class FastGELU(nn.Module):
|
|
|
|
|
48 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
49 |
out = torch.empty_like(x)
|
50 |
ops.gelu_fast(out, x)
|
|
|
52 |
|
53 |
|
54 |
class NewGELU(nn.Module):
|
|
|
|
|
55 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
56 |
out = torch.empty_like(x)
|
57 |
ops.gelu_new(out, x)
|
|
|
59 |
|
60 |
|
61 |
class QuickGELU(nn.Module):
|
|
|
|
|
62 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
63 |
out = torch.empty_like(x)
|
64 |
ops.gelu_quick(out, x)
|
build/torch26-cxx11-cu124-x86_64-linux/activation/_activation_ochhfvlnc3vyc.abi3.so
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f6bd20d411c51fc8729b15cab6a60c5c9185222474aa035489e1bff299d76682
|
3 |
+
size 2428040
|
build/torch26-cxx11-cu124-x86_64-linux/activation/_ops.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
import torch
|
2 |
-
from . import
|
3 |
-
ops = torch.ops.
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
-
return f"
|
|
|
1 |
import torch
|
2 |
+
from . import _activation_ochhfvlnc3vyc
|
3 |
+
ops = torch.ops._activation_ochhfvlnc3vyc
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
+
return f"_activation_ochhfvlnc3vyc::{op_name}"
|
build/torch26-cxx11-cu124-x86_64-linux/activation/layers.py
CHANGED
@@ -5,8 +5,6 @@ from ._ops import ops
|
|
5 |
|
6 |
|
7 |
class SiluAndMul(nn.Module):
|
8 |
-
can_torch_compile: bool = True
|
9 |
-
|
10 |
def forward(self, x: torch.Tensor):
|
11 |
d = x.shape[-1] // 2
|
12 |
output_shape = x.shape[:-1] + (d,)
|
@@ -16,8 +14,6 @@ class SiluAndMul(nn.Module):
|
|
16 |
|
17 |
|
18 |
class GeluAndMul(nn.Module):
|
19 |
-
can_torch_compile: bool = True
|
20 |
-
|
21 |
def forward(self, x: torch.Tensor):
|
22 |
d = x.shape[-1] // 2
|
23 |
output_shape = x.shape[:-1] + (d,)
|
@@ -27,8 +23,6 @@ class GeluAndMul(nn.Module):
|
|
27 |
|
28 |
|
29 |
class GeluTanhAndMul(nn.Module):
|
30 |
-
can_torch_compile: bool = True
|
31 |
-
|
32 |
def forward(self, x: torch.Tensor):
|
33 |
d = x.shape[-1] // 2
|
34 |
output_shape = x.shape[:-1] + (d,)
|
@@ -38,8 +32,6 @@ class GeluTanhAndMul(nn.Module):
|
|
38 |
|
39 |
|
40 |
class FatreluAndMul(nn.Module):
|
41 |
-
can_torch_compile: bool = True
|
42 |
-
|
43 |
def __init__(self, threshold: float = 0.0):
|
44 |
super().__init__()
|
45 |
self.threshold = threshold
|
@@ -53,8 +45,6 @@ class FatreluAndMul(nn.Module):
|
|
53 |
|
54 |
|
55 |
class FastGELU(nn.Module):
|
56 |
-
can_torch_compile: bool = True
|
57 |
-
|
58 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
59 |
out = torch.empty_like(x)
|
60 |
ops.gelu_fast(out, x)
|
@@ -62,8 +52,6 @@ class FastGELU(nn.Module):
|
|
62 |
|
63 |
|
64 |
class NewGELU(nn.Module):
|
65 |
-
can_torch_compile: bool = True
|
66 |
-
|
67 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
68 |
out = torch.empty_like(x)
|
69 |
ops.gelu_new(out, x)
|
@@ -71,8 +59,6 @@ class NewGELU(nn.Module):
|
|
71 |
|
72 |
|
73 |
class QuickGELU(nn.Module):
|
74 |
-
can_torch_compile: bool = True
|
75 |
-
|
76 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
77 |
out = torch.empty_like(x)
|
78 |
ops.gelu_quick(out, x)
|
|
|
5 |
|
6 |
|
7 |
class SiluAndMul(nn.Module):
|
|
|
|
|
8 |
def forward(self, x: torch.Tensor):
|
9 |
d = x.shape[-1] // 2
|
10 |
output_shape = x.shape[:-1] + (d,)
|
|
|
14 |
|
15 |
|
16 |
class GeluAndMul(nn.Module):
|
|
|
|
|
17 |
def forward(self, x: torch.Tensor):
|
18 |
d = x.shape[-1] // 2
|
19 |
output_shape = x.shape[:-1] + (d,)
|
|
|
23 |
|
24 |
|
25 |
class GeluTanhAndMul(nn.Module):
|
|
|
|
|
26 |
def forward(self, x: torch.Tensor):
|
27 |
d = x.shape[-1] // 2
|
28 |
output_shape = x.shape[:-1] + (d,)
|
|
|
32 |
|
33 |
|
34 |
class FatreluAndMul(nn.Module):
|
|
|
|
|
35 |
def __init__(self, threshold: float = 0.0):
|
36 |
super().__init__()
|
37 |
self.threshold = threshold
|
|
|
45 |
|
46 |
|
47 |
class FastGELU(nn.Module):
|
|
|
|
|
48 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
49 |
out = torch.empty_like(x)
|
50 |
ops.gelu_fast(out, x)
|
|
|
52 |
|
53 |
|
54 |
class NewGELU(nn.Module):
|
|
|
|
|
55 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
56 |
out = torch.empty_like(x)
|
57 |
ops.gelu_new(out, x)
|
|
|
59 |
|
60 |
|
61 |
class QuickGELU(nn.Module):
|
|
|
|
|
62 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
63 |
out = torch.empty_like(x)
|
64 |
ops.gelu_quick(out, x)
|
build/torch26-cxx11-cu126-x86_64-linux/activation/_activation_u6vnqubnicksq.abi3.so
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:41c18b20c2bf8c49d2d3088a9bc1aad4293df0b57eafc9b141a9e8e595fe551a
|
3 |
+
size 2436672
|
build/torch26-cxx11-cu126-x86_64-linux/activation/_ops.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
import torch
|
2 |
-
from . import
|
3 |
-
ops = torch.ops.
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
-
return f"
|
|
|
1 |
import torch
|
2 |
+
from . import _activation_u6vnqubnicksq
|
3 |
+
ops = torch.ops._activation_u6vnqubnicksq
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
+
return f"_activation_u6vnqubnicksq::{op_name}"
|
build/torch26-cxx11-cu126-x86_64-linux/activation/layers.py
CHANGED
@@ -5,8 +5,6 @@ from ._ops import ops
|
|
5 |
|
6 |
|
7 |
class SiluAndMul(nn.Module):
|
8 |
-
can_torch_compile: bool = True
|
9 |
-
|
10 |
def forward(self, x: torch.Tensor):
|
11 |
d = x.shape[-1] // 2
|
12 |
output_shape = x.shape[:-1] + (d,)
|
@@ -16,8 +14,6 @@ class SiluAndMul(nn.Module):
|
|
16 |
|
17 |
|
18 |
class GeluAndMul(nn.Module):
|
19 |
-
can_torch_compile: bool = True
|
20 |
-
|
21 |
def forward(self, x: torch.Tensor):
|
22 |
d = x.shape[-1] // 2
|
23 |
output_shape = x.shape[:-1] + (d,)
|
@@ -27,8 +23,6 @@ class GeluAndMul(nn.Module):
|
|
27 |
|
28 |
|
29 |
class GeluTanhAndMul(nn.Module):
|
30 |
-
can_torch_compile: bool = True
|
31 |
-
|
32 |
def forward(self, x: torch.Tensor):
|
33 |
d = x.shape[-1] // 2
|
34 |
output_shape = x.shape[:-1] + (d,)
|
@@ -38,8 +32,6 @@ class GeluTanhAndMul(nn.Module):
|
|
38 |
|
39 |
|
40 |
class FatreluAndMul(nn.Module):
|
41 |
-
can_torch_compile: bool = True
|
42 |
-
|
43 |
def __init__(self, threshold: float = 0.0):
|
44 |
super().__init__()
|
45 |
self.threshold = threshold
|
@@ -53,8 +45,6 @@ class FatreluAndMul(nn.Module):
|
|
53 |
|
54 |
|
55 |
class FastGELU(nn.Module):
|
56 |
-
can_torch_compile: bool = True
|
57 |
-
|
58 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
59 |
out = torch.empty_like(x)
|
60 |
ops.gelu_fast(out, x)
|
@@ -62,8 +52,6 @@ class FastGELU(nn.Module):
|
|
62 |
|
63 |
|
64 |
class NewGELU(nn.Module):
|
65 |
-
can_torch_compile: bool = True
|
66 |
-
|
67 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
68 |
out = torch.empty_like(x)
|
69 |
ops.gelu_new(out, x)
|
@@ -71,8 +59,6 @@ class NewGELU(nn.Module):
|
|
71 |
|
72 |
|
73 |
class QuickGELU(nn.Module):
|
74 |
-
can_torch_compile: bool = True
|
75 |
-
|
76 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
77 |
out = torch.empty_like(x)
|
78 |
ops.gelu_quick(out, x)
|
|
|
5 |
|
6 |
|
7 |
class SiluAndMul(nn.Module):
|
|
|
|
|
8 |
def forward(self, x: torch.Tensor):
|
9 |
d = x.shape[-1] // 2
|
10 |
output_shape = x.shape[:-1] + (d,)
|
|
|
14 |
|
15 |
|
16 |
class GeluAndMul(nn.Module):
|
|
|
|
|
17 |
def forward(self, x: torch.Tensor):
|
18 |
d = x.shape[-1] // 2
|
19 |
output_shape = x.shape[:-1] + (d,)
|
|
|
23 |
|
24 |
|
25 |
class GeluTanhAndMul(nn.Module):
|
|
|
|
|
26 |
def forward(self, x: torch.Tensor):
|
27 |
d = x.shape[-1] // 2
|
28 |
output_shape = x.shape[:-1] + (d,)
|
|
|
32 |
|
33 |
|
34 |
class FatreluAndMul(nn.Module):
|
|
|
|
|
35 |
def __init__(self, threshold: float = 0.0):
|
36 |
super().__init__()
|
37 |
self.threshold = threshold
|
|
|
45 |
|
46 |
|
47 |
class FastGELU(nn.Module):
|
|
|
|
|
48 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
49 |
out = torch.empty_like(x)
|
50 |
ops.gelu_fast(out, x)
|
|
|
52 |
|
53 |
|
54 |
class NewGELU(nn.Module):
|
|
|
|
|
55 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
56 |
out = torch.empty_like(x)
|
57 |
ops.gelu_new(out, x)
|
|
|
59 |
|
60 |
|
61 |
class QuickGELU(nn.Module):
|
|
|
|
|
62 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
63 |
out = torch.empty_like(x)
|
64 |
ops.gelu_quick(out, x)
|
build/torch26-cxx98-cu118-x86_64-linux/activation/_activation_2vn6ty3gfqfb6.abi3.so
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfbcd5da358cd5cb7982d19c8880cf4db6f08b46622a7a953f755ad59e4e1492
|
3 |
+
size 2362752
|
build/torch26-cxx98-cu118-x86_64-linux/activation/_ops.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
import torch
|
2 |
-
from . import
|
3 |
-
ops = torch.ops.
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
-
return f"
|
|
|
1 |
import torch
|
2 |
+
from . import _activation_2vn6ty3gfqfb6
|
3 |
+
ops = torch.ops._activation_2vn6ty3gfqfb6
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
+
return f"_activation_2vn6ty3gfqfb6::{op_name}"
|
build/torch26-cxx98-cu118-x86_64-linux/activation/layers.py
CHANGED
@@ -5,8 +5,6 @@ from ._ops import ops
|
|
5 |
|
6 |
|
7 |
class SiluAndMul(nn.Module):
|
8 |
-
can_torch_compile: bool = True
|
9 |
-
|
10 |
def forward(self, x: torch.Tensor):
|
11 |
d = x.shape[-1] // 2
|
12 |
output_shape = x.shape[:-1] + (d,)
|
@@ -16,8 +14,6 @@ class SiluAndMul(nn.Module):
|
|
16 |
|
17 |
|
18 |
class GeluAndMul(nn.Module):
|
19 |
-
can_torch_compile: bool = True
|
20 |
-
|
21 |
def forward(self, x: torch.Tensor):
|
22 |
d = x.shape[-1] // 2
|
23 |
output_shape = x.shape[:-1] + (d,)
|
@@ -27,8 +23,6 @@ class GeluAndMul(nn.Module):
|
|
27 |
|
28 |
|
29 |
class GeluTanhAndMul(nn.Module):
|
30 |
-
can_torch_compile: bool = True
|
31 |
-
|
32 |
def forward(self, x: torch.Tensor):
|
33 |
d = x.shape[-1] // 2
|
34 |
output_shape = x.shape[:-1] + (d,)
|
@@ -38,8 +32,6 @@ class GeluTanhAndMul(nn.Module):
|
|
38 |
|
39 |
|
40 |
class FatreluAndMul(nn.Module):
|
41 |
-
can_torch_compile: bool = True
|
42 |
-
|
43 |
def __init__(self, threshold: float = 0.0):
|
44 |
super().__init__()
|
45 |
self.threshold = threshold
|
@@ -53,8 +45,6 @@ class FatreluAndMul(nn.Module):
|
|
53 |
|
54 |
|
55 |
class FastGELU(nn.Module):
|
56 |
-
can_torch_compile: bool = True
|
57 |
-
|
58 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
59 |
out = torch.empty_like(x)
|
60 |
ops.gelu_fast(out, x)
|
@@ -62,8 +52,6 @@ class FastGELU(nn.Module):
|
|
62 |
|
63 |
|
64 |
class NewGELU(nn.Module):
|
65 |
-
can_torch_compile: bool = True
|
66 |
-
|
67 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
68 |
out = torch.empty_like(x)
|
69 |
ops.gelu_new(out, x)
|
@@ -71,8 +59,6 @@ class NewGELU(nn.Module):
|
|
71 |
|
72 |
|
73 |
class QuickGELU(nn.Module):
|
74 |
-
can_torch_compile: bool = True
|
75 |
-
|
76 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
77 |
out = torch.empty_like(x)
|
78 |
ops.gelu_quick(out, x)
|
|
|
5 |
|
6 |
|
7 |
class SiluAndMul(nn.Module):
|
|
|
|
|
8 |
def forward(self, x: torch.Tensor):
|
9 |
d = x.shape[-1] // 2
|
10 |
output_shape = x.shape[:-1] + (d,)
|
|
|
14 |
|
15 |
|
16 |
class GeluAndMul(nn.Module):
|
|
|
|
|
17 |
def forward(self, x: torch.Tensor):
|
18 |
d = x.shape[-1] // 2
|
19 |
output_shape = x.shape[:-1] + (d,)
|
|
|
23 |
|
24 |
|
25 |
class GeluTanhAndMul(nn.Module):
|
|
|
|
|
26 |
def forward(self, x: torch.Tensor):
|
27 |
d = x.shape[-1] // 2
|
28 |
output_shape = x.shape[:-1] + (d,)
|
|
|
32 |
|
33 |
|
34 |
class FatreluAndMul(nn.Module):
|
|
|
|
|
35 |
def __init__(self, threshold: float = 0.0):
|
36 |
super().__init__()
|
37 |
self.threshold = threshold
|
|
|
45 |
|
46 |
|
47 |
class FastGELU(nn.Module):
|
|
|
|
|
48 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
49 |
out = torch.empty_like(x)
|
50 |
ops.gelu_fast(out, x)
|
|
|
52 |
|
53 |
|
54 |
class NewGELU(nn.Module):
|
|
|
|
|
55 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
56 |
out = torch.empty_like(x)
|
57 |
ops.gelu_new(out, x)
|
|
|
59 |
|
60 |
|
61 |
class QuickGELU(nn.Module):
|
|
|
|
|
62 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
63 |
out = torch.empty_like(x)
|
64 |
ops.gelu_quick(out, x)
|
build/torch26-cxx98-cu124-x86_64-linux/activation/_activation_e99cc09_dirty.abi3.so
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:e364773259dc1b91f3c0d3b076da83c5a9c6ee18ffdace30315c602dffd1dabe
|
3 |
-
size 2502264
|
|
|
|
|
|
|
|
build/torch26-cxx98-cu124-x86_64-linux/activation/_activation_myvteedxdpqc6.abi3.so
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b1bc928823117c800904bcd3492bf1a0c65a32f6d8a842dc039f55e29831ab49
|
3 |
+
size 2420344
|
build/torch26-cxx98-cu124-x86_64-linux/activation/_ops.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
import torch
|
2 |
-
from . import
|
3 |
-
ops = torch.ops.
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
-
return f"
|
|
|
1 |
import torch
|
2 |
+
from . import _activation_myvteedxdpqc6
|
3 |
+
ops = torch.ops._activation_myvteedxdpqc6
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
+
return f"_activation_myvteedxdpqc6::{op_name}"
|
build/torch26-cxx98-cu124-x86_64-linux/activation/layers.py
CHANGED
@@ -5,8 +5,6 @@ from ._ops import ops
|
|
5 |
|
6 |
|
7 |
class SiluAndMul(nn.Module):
|
8 |
-
can_torch_compile: bool = True
|
9 |
-
|
10 |
def forward(self, x: torch.Tensor):
|
11 |
d = x.shape[-1] // 2
|
12 |
output_shape = x.shape[:-1] + (d,)
|
@@ -16,8 +14,6 @@ class SiluAndMul(nn.Module):
|
|
16 |
|
17 |
|
18 |
class GeluAndMul(nn.Module):
|
19 |
-
can_torch_compile: bool = True
|
20 |
-
|
21 |
def forward(self, x: torch.Tensor):
|
22 |
d = x.shape[-1] // 2
|
23 |
output_shape = x.shape[:-1] + (d,)
|
@@ -27,8 +23,6 @@ class GeluAndMul(nn.Module):
|
|
27 |
|
28 |
|
29 |
class GeluTanhAndMul(nn.Module):
|
30 |
-
can_torch_compile: bool = True
|
31 |
-
|
32 |
def forward(self, x: torch.Tensor):
|
33 |
d = x.shape[-1] // 2
|
34 |
output_shape = x.shape[:-1] + (d,)
|
@@ -38,8 +32,6 @@ class GeluTanhAndMul(nn.Module):
|
|
38 |
|
39 |
|
40 |
class FatreluAndMul(nn.Module):
|
41 |
-
can_torch_compile: bool = True
|
42 |
-
|
43 |
def __init__(self, threshold: float = 0.0):
|
44 |
super().__init__()
|
45 |
self.threshold = threshold
|
@@ -53,8 +45,6 @@ class FatreluAndMul(nn.Module):
|
|
53 |
|
54 |
|
55 |
class FastGELU(nn.Module):
|
56 |
-
can_torch_compile: bool = True
|
57 |
-
|
58 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
59 |
out = torch.empty_like(x)
|
60 |
ops.gelu_fast(out, x)
|
@@ -62,8 +52,6 @@ class FastGELU(nn.Module):
|
|
62 |
|
63 |
|
64 |
class NewGELU(nn.Module):
|
65 |
-
can_torch_compile: bool = True
|
66 |
-
|
67 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
68 |
out = torch.empty_like(x)
|
69 |
ops.gelu_new(out, x)
|
@@ -71,8 +59,6 @@ class NewGELU(nn.Module):
|
|
71 |
|
72 |
|
73 |
class QuickGELU(nn.Module):
|
74 |
-
can_torch_compile: bool = True
|
75 |
-
|
76 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
77 |
out = torch.empty_like(x)
|
78 |
ops.gelu_quick(out, x)
|
|
|
5 |
|
6 |
|
7 |
class SiluAndMul(nn.Module):
|
|
|
|
|
8 |
def forward(self, x: torch.Tensor):
|
9 |
d = x.shape[-1] // 2
|
10 |
output_shape = x.shape[:-1] + (d,)
|
|
|
14 |
|
15 |
|
16 |
class GeluAndMul(nn.Module):
|
|
|
|
|
17 |
def forward(self, x: torch.Tensor):
|
18 |
d = x.shape[-1] // 2
|
19 |
output_shape = x.shape[:-1] + (d,)
|
|
|
23 |
|
24 |
|
25 |
class GeluTanhAndMul(nn.Module):
|
|
|
|
|
26 |
def forward(self, x: torch.Tensor):
|
27 |
d = x.shape[-1] // 2
|
28 |
output_shape = x.shape[:-1] + (d,)
|
|
|
32 |
|
33 |
|
34 |
class FatreluAndMul(nn.Module):
|
|
|
|
|
35 |
def __init__(self, threshold: float = 0.0):
|
36 |
super().__init__()
|
37 |
self.threshold = threshold
|
|
|
45 |
|
46 |
|
47 |
class FastGELU(nn.Module):
|
|
|
|
|
48 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
49 |
out = torch.empty_like(x)
|
50 |
ops.gelu_fast(out, x)
|
|
|
52 |
|
53 |
|
54 |
class NewGELU(nn.Module):
|
|
|
|
|
55 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
56 |
out = torch.empty_like(x)
|
57 |
ops.gelu_new(out, x)
|
|
|
59 |
|
60 |
|
61 |
class QuickGELU(nn.Module):
|
|
|
|
|
62 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
63 |
out = torch.empty_like(x)
|
64 |
ops.gelu_quick(out, x)
|
build/torch26-cxx98-cu126-x86_64-linux/activation/_activation_e99cc09_dirty.abi3.so
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:7ac88cc0d3c65ab283d20608f3a097be29ee572e7856f10f8d7919536efd95b4
|
3 |
-
size 2506808
|
|
|
|
|
|
|
|
build/torch26-cxx98-cu126-x86_64-linux/activation/_activation_rbswus6emrhm2.abi3.so
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:474727e434a9cd4ec984a6da7124992ead4ca0fefce9581d0fd503e36c065aed
|
3 |
+
size 2424888
|
build/torch26-cxx98-cu126-x86_64-linux/activation/_ops.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
import torch
|
2 |
-
from . import
|
3 |
-
ops = torch.ops.
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
-
return f"
|
|
|
1 |
import torch
|
2 |
+
from . import _activation_rbswus6emrhm2
|
3 |
+
ops = torch.ops._activation_rbswus6emrhm2
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
+
return f"_activation_rbswus6emrhm2::{op_name}"
|
build/torch26-cxx98-cu126-x86_64-linux/activation/layers.py
CHANGED
@@ -5,8 +5,6 @@ from ._ops import ops
|
|
5 |
|
6 |
|
7 |
class SiluAndMul(nn.Module):
|
8 |
-
can_torch_compile: bool = True
|
9 |
-
|
10 |
def forward(self, x: torch.Tensor):
|
11 |
d = x.shape[-1] // 2
|
12 |
output_shape = x.shape[:-1] + (d,)
|
@@ -16,8 +14,6 @@ class SiluAndMul(nn.Module):
|
|
16 |
|
17 |
|
18 |
class GeluAndMul(nn.Module):
|
19 |
-
can_torch_compile: bool = True
|
20 |
-
|
21 |
def forward(self, x: torch.Tensor):
|
22 |
d = x.shape[-1] // 2
|
23 |
output_shape = x.shape[:-1] + (d,)
|
@@ -27,8 +23,6 @@ class GeluAndMul(nn.Module):
|
|
27 |
|
28 |
|
29 |
class GeluTanhAndMul(nn.Module):
|
30 |
-
can_torch_compile: bool = True
|
31 |
-
|
32 |
def forward(self, x: torch.Tensor):
|
33 |
d = x.shape[-1] // 2
|
34 |
output_shape = x.shape[:-1] + (d,)
|
@@ -38,8 +32,6 @@ class GeluTanhAndMul(nn.Module):
|
|
38 |
|
39 |
|
40 |
class FatreluAndMul(nn.Module):
|
41 |
-
can_torch_compile: bool = True
|
42 |
-
|
43 |
def __init__(self, threshold: float = 0.0):
|
44 |
super().__init__()
|
45 |
self.threshold = threshold
|
@@ -53,8 +45,6 @@ class FatreluAndMul(nn.Module):
|
|
53 |
|
54 |
|
55 |
class FastGELU(nn.Module):
|
56 |
-
can_torch_compile: bool = True
|
57 |
-
|
58 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
59 |
out = torch.empty_like(x)
|
60 |
ops.gelu_fast(out, x)
|
@@ -62,8 +52,6 @@ class FastGELU(nn.Module):
|
|
62 |
|
63 |
|
64 |
class NewGELU(nn.Module):
|
65 |
-
can_torch_compile: bool = True
|
66 |
-
|
67 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
68 |
out = torch.empty_like(x)
|
69 |
ops.gelu_new(out, x)
|
@@ -71,8 +59,6 @@ class NewGELU(nn.Module):
|
|
71 |
|
72 |
|
73 |
class QuickGELU(nn.Module):
|
74 |
-
can_torch_compile: bool = True
|
75 |
-
|
76 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
77 |
out = torch.empty_like(x)
|
78 |
ops.gelu_quick(out, x)
|
|
|
5 |
|
6 |
|
7 |
class SiluAndMul(nn.Module):
|
|
|
|
|
8 |
def forward(self, x: torch.Tensor):
|
9 |
d = x.shape[-1] // 2
|
10 |
output_shape = x.shape[:-1] + (d,)
|
|
|
14 |
|
15 |
|
16 |
class GeluAndMul(nn.Module):
|
|
|
|
|
17 |
def forward(self, x: torch.Tensor):
|
18 |
d = x.shape[-1] // 2
|
19 |
output_shape = x.shape[:-1] + (d,)
|
|
|
23 |
|
24 |
|
25 |
class GeluTanhAndMul(nn.Module):
|
|
|
|
|
26 |
def forward(self, x: torch.Tensor):
|
27 |
d = x.shape[-1] // 2
|
28 |
output_shape = x.shape[:-1] + (d,)
|
|
|
32 |
|
33 |
|
34 |
class FatreluAndMul(nn.Module):
|
|
|
|
|
35 |
def __init__(self, threshold: float = 0.0):
|
36 |
super().__init__()
|
37 |
self.threshold = threshold
|
|
|
45 |
|
46 |
|
47 |
class FastGELU(nn.Module):
|
|
|
|
|
48 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
49 |
out = torch.empty_like(x)
|
50 |
ops.gelu_fast(out, x)
|
|
|
52 |
|
53 |
|
54 |
class NewGELU(nn.Module):
|
|
|
|
|
55 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
56 |
out = torch.empty_like(x)
|
57 |
ops.gelu_new(out, x)
|
|
|
59 |
|
60 |
|
61 |
class QuickGELU(nn.Module):
|
|
|
|
|
62 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
63 |
out = torch.empty_like(x)
|
64 |
ops.gelu_quick(out, x)
|
build/torch27-cxx11-cu118-x86_64-linux/activation/_activation_e99cc09_dirty.abi3.so
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:e4f9e647eea40d3d3801d5ee57d4917e4c2e8dbfd87cdfebdc40b1b0a1c571fe
|
3 |
-
size 2448184
|
|
|
|
|
|
|
|
build/torch27-cxx11-cu126-x86_64-linux/activation/_activation_e99cc09_dirty.abi3.so
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:a2b72ff2a0f2253e4dfe028842b5f15cabf2647d7812bf4662a2de510ca0c489
|
3 |
-
size 2518632
|
|
|
|
|
|
|
|
build/torch27-cxx11-cu128-x86_64-linux/activation/_activation_e99cc09_dirty.abi3.so
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:f4590c852899e4c11ddb74cfad61e26b07490a91f3c09e0fb0874a3fcc1f533e
|
3 |
-
size 3331456
|
|
|
|
|
|
|
|
flake.lock
DELETED
@@ -1,168 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"nodes": {
|
3 |
-
"flake-compat": {
|
4 |
-
"locked": {
|
5 |
-
"lastModified": 1747046372,
|
6 |
-
"narHash": "sha256-CIVLLkVgvHYbgI2UpXvIIBJ12HWgX+fjA8Xf8PUmqCY=",
|
7 |
-
"owner": "edolstra",
|
8 |
-
"repo": "flake-compat",
|
9 |
-
"rev": "9100a0f413b0c601e0533d1d94ffd501ce2e7885",
|
10 |
-
"type": "github"
|
11 |
-
},
|
12 |
-
"original": {
|
13 |
-
"owner": "edolstra",
|
14 |
-
"repo": "flake-compat",
|
15 |
-
"type": "github"
|
16 |
-
}
|
17 |
-
},
|
18 |
-
"flake-compat_2": {
|
19 |
-
"locked": {
|
20 |
-
"lastModified": 1733328505,
|
21 |
-
"narHash": "sha256-NeCCThCEP3eCl2l/+27kNNK7QrwZB1IJCrXfrbv5oqU=",
|
22 |
-
"owner": "edolstra",
|
23 |
-
"repo": "flake-compat",
|
24 |
-
"rev": "ff81ac966bb2cae68946d5ed5fc4994f96d0ffec",
|
25 |
-
"type": "github"
|
26 |
-
},
|
27 |
-
"original": {
|
28 |
-
"owner": "edolstra",
|
29 |
-
"repo": "flake-compat",
|
30 |
-
"type": "github"
|
31 |
-
}
|
32 |
-
},
|
33 |
-
"flake-utils": {
|
34 |
-
"inputs": {
|
35 |
-
"systems": "systems"
|
36 |
-
},
|
37 |
-
"locked": {
|
38 |
-
"lastModified": 1731533236,
|
39 |
-
"narHash": "sha256-l0KFg5HjrsfsO/JpG+r7fRrqm12kzFHyUHqHCVpMMbI=",
|
40 |
-
"owner": "numtide",
|
41 |
-
"repo": "flake-utils",
|
42 |
-
"rev": "11707dc2f618dd54ca8739b309ec4fc024de578b",
|
43 |
-
"type": "github"
|
44 |
-
},
|
45 |
-
"original": {
|
46 |
-
"owner": "numtide",
|
47 |
-
"repo": "flake-utils",
|
48 |
-
"type": "github"
|
49 |
-
}
|
50 |
-
},
|
51 |
-
"flake-utils_2": {
|
52 |
-
"inputs": {
|
53 |
-
"systems": "systems_2"
|
54 |
-
},
|
55 |
-
"locked": {
|
56 |
-
"lastModified": 1731533236,
|
57 |
-
"narHash": "sha256-l0KFg5HjrsfsO/JpG+r7fRrqm12kzFHyUHqHCVpMMbI=",
|
58 |
-
"owner": "numtide",
|
59 |
-
"repo": "flake-utils",
|
60 |
-
"rev": "11707dc2f618dd54ca8739b309ec4fc024de578b",
|
61 |
-
"type": "github"
|
62 |
-
},
|
63 |
-
"original": {
|
64 |
-
"owner": "numtide",
|
65 |
-
"repo": "flake-utils",
|
66 |
-
"type": "github"
|
67 |
-
}
|
68 |
-
},
|
69 |
-
"hf-nix": {
|
70 |
-
"inputs": {
|
71 |
-
"flake-compat": "flake-compat_2",
|
72 |
-
"flake-utils": "flake-utils_2",
|
73 |
-
"nixpkgs": "nixpkgs"
|
74 |
-
},
|
75 |
-
"locked": {
|
76 |
-
"lastModified": 1747919133,
|
77 |
-
"narHash": "sha256-VvF1naQOvv7yulQ5/cDiaxkNxlh1Y84QMZnderv1szk=",
|
78 |
-
"owner": "huggingface",
|
79 |
-
"repo": "hf-nix",
|
80 |
-
"rev": "9c71e026d6c7c8588ef85a5f7c77f57d598e038c",
|
81 |
-
"type": "github"
|
82 |
-
},
|
83 |
-
"original": {
|
84 |
-
"owner": "huggingface",
|
85 |
-
"repo": "hf-nix",
|
86 |
-
"type": "github"
|
87 |
-
}
|
88 |
-
},
|
89 |
-
"kernel-builder": {
|
90 |
-
"inputs": {
|
91 |
-
"flake-compat": "flake-compat",
|
92 |
-
"flake-utils": "flake-utils",
|
93 |
-
"hf-nix": "hf-nix",
|
94 |
-
"nixpkgs": [
|
95 |
-
"kernel-builder",
|
96 |
-
"hf-nix",
|
97 |
-
"nixpkgs"
|
98 |
-
]
|
99 |
-
},
|
100 |
-
"locked": {
|
101 |
-
"lastModified": 1748620233,
|
102 |
-
"narHash": "sha256-VULm9HgGXvo3pyfsPy3SOhoqgkuqbGSaSemvzNUbdIU=",
|
103 |
-
"owner": "huggingface",
|
104 |
-
"repo": "kernel-builder",
|
105 |
-
"rev": "da3340e5b3cbb6086600420f4814b033395788d1",
|
106 |
-
"type": "github"
|
107 |
-
},
|
108 |
-
"original": {
|
109 |
-
"owner": "huggingface",
|
110 |
-
"repo": "kernel-builder",
|
111 |
-
"type": "github"
|
112 |
-
}
|
113 |
-
},
|
114 |
-
"nixpkgs": {
|
115 |
-
"locked": {
|
116 |
-
"lastModified": 1747820358,
|
117 |
-
"narHash": "sha256-fTqsZsUX6M3yeEvgyQvXcbGmT2CaRVyVwsi8eK29Oj4=",
|
118 |
-
"owner": "danieldk",
|
119 |
-
"repo": "nixpkgs",
|
120 |
-
"rev": "d3c1681180717528068082103bf323147de6ab0b",
|
121 |
-
"type": "github"
|
122 |
-
},
|
123 |
-
"original": {
|
124 |
-
"owner": "danieldk",
|
125 |
-
"ref": "cudatoolkit-12.9-kernel-builder",
|
126 |
-
"repo": "nixpkgs",
|
127 |
-
"type": "github"
|
128 |
-
}
|
129 |
-
},
|
130 |
-
"root": {
|
131 |
-
"inputs": {
|
132 |
-
"kernel-builder": "kernel-builder"
|
133 |
-
}
|
134 |
-
},
|
135 |
-
"systems": {
|
136 |
-
"locked": {
|
137 |
-
"lastModified": 1681028828,
|
138 |
-
"narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
|
139 |
-
"owner": "nix-systems",
|
140 |
-
"repo": "default",
|
141 |
-
"rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
|
142 |
-
"type": "github"
|
143 |
-
},
|
144 |
-
"original": {
|
145 |
-
"owner": "nix-systems",
|
146 |
-
"repo": "default",
|
147 |
-
"type": "github"
|
148 |
-
}
|
149 |
-
},
|
150 |
-
"systems_2": {
|
151 |
-
"locked": {
|
152 |
-
"lastModified": 1681028828,
|
153 |
-
"narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
|
154 |
-
"owner": "nix-systems",
|
155 |
-
"repo": "default",
|
156 |
-
"rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
|
157 |
-
"type": "github"
|
158 |
-
},
|
159 |
-
"original": {
|
160 |
-
"owner": "nix-systems",
|
161 |
-
"repo": "default",
|
162 |
-
"type": "github"
|
163 |
-
}
|
164 |
-
}
|
165 |
-
},
|
166 |
-
"root": "root",
|
167 |
-
"version": 7
|
168 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|