feat: update to include rev in kernel for reproducible symbols

#2
by drbh HF Staff - opened
This view is limited to 50 files because it contains too many changes.  See the raw diff here.
Files changed (50) hide show
  1. README.md +0 -3
  2. build.toml +7 -8
  3. build/{torch27-cxx11-cu118-x86_64-linux → torch25-cxx11-cu118-x86_64-linux}/activation/__init__.py +0 -0
  4. build/{torch26-cxx11-cu118-x86_64-linux/activation/_activation_e99cc09_dirty.abi3.so → torch25-cxx11-cu118-x86_64-linux/activation/_activation_o63kkyjirmkf4.abi3.so} +2 -2
  5. build/{torch27-cxx11-cu118-x86_64-linux → torch25-cxx11-cu118-x86_64-linux}/activation/_ops.py +3 -3
  6. build/{torch27-cxx11-cu118-x86_64-linux → torch25-cxx11-cu118-x86_64-linux}/activation/layers.py +0 -14
  7. build/{torch27-cxx11-cu126-x86_64-linux → torch25-cxx11-cu121-x86_64-linux}/activation/__init__.py +0 -0
  8. build/{torch26-cxx11-cu124-x86_64-linux/activation/_activation_e99cc09_dirty.abi3.so → torch25-cxx11-cu121-x86_64-linux/activation/_activation_vrl36m2ejer54.abi3.so} +2 -2
  9. build/{torch27-cxx11-cu126-x86_64-linux → torch25-cxx11-cu121-x86_64-linux}/activation/_ops.py +3 -3
  10. build/{torch27-cxx11-cu126-x86_64-linux → torch25-cxx11-cu121-x86_64-linux}/activation/layers.py +0 -14
  11. build/{torch27-cxx11-cu128-x86_64-linux → torch25-cxx11-cu124-x86_64-linux}/activation/__init__.py +0 -0
  12. build/{torch26-cxx11-cu126-x86_64-linux/activation/_activation_e99cc09_dirty.abi3.so → torch25-cxx11-cu124-x86_64-linux/activation/_activation_va3moa75vw7c2.abi3.so} +2 -2
  13. build/{torch27-cxx11-cu128-x86_64-linux → torch25-cxx11-cu124-x86_64-linux}/activation/_ops.py +3 -3
  14. build/{torch27-cxx11-cu128-x86_64-linux → torch25-cxx11-cu124-x86_64-linux}/activation/layers.py +0 -14
  15. build/torch25-cxx98-cu118-x86_64-linux/activation/__init__.py +52 -0
  16. build/{torch26-cxx98-cu118-x86_64-linux/activation/_activation_e99cc09_dirty.abi3.so → torch25-cxx98-cu118-x86_64-linux/activation/_activation_qr3gs3eckeig4.abi3.so} +2 -2
  17. build/torch25-cxx98-cu118-x86_64-linux/activation/_ops.py +9 -0
  18. build/torch25-cxx98-cu118-x86_64-linux/activation/layers.py +65 -0
  19. build/torch25-cxx98-cu121-x86_64-linux/activation/__init__.py +52 -0
  20. build/torch25-cxx98-cu121-x86_64-linux/activation/_activation_p7gbzt25w3zg2.abi3.so +3 -0
  21. build/torch25-cxx98-cu121-x86_64-linux/activation/_ops.py +9 -0
  22. build/torch25-cxx98-cu121-x86_64-linux/activation/layers.py +65 -0
  23. build/torch25-cxx98-cu124-x86_64-linux/activation/__init__.py +52 -0
  24. build/torch25-cxx98-cu124-x86_64-linux/activation/_activation_jg7yaigtn7wco.abi3.so +3 -0
  25. build/torch25-cxx98-cu124-x86_64-linux/activation/_ops.py +9 -0
  26. build/torch25-cxx98-cu124-x86_64-linux/activation/layers.py +65 -0
  27. build/torch26-cxx11-cu118-x86_64-linux/activation/_activation_ncisyrun7guwk.abi3.so +3 -0
  28. build/torch26-cxx11-cu118-x86_64-linux/activation/_ops.py +3 -3
  29. build/torch26-cxx11-cu118-x86_64-linux/activation/layers.py +0 -14
  30. build/torch26-cxx11-cu124-x86_64-linux/activation/_activation_ochhfvlnc3vyc.abi3.so +3 -0
  31. build/torch26-cxx11-cu124-x86_64-linux/activation/_ops.py +3 -3
  32. build/torch26-cxx11-cu124-x86_64-linux/activation/layers.py +0 -14
  33. build/torch26-cxx11-cu126-x86_64-linux/activation/_activation_u6vnqubnicksq.abi3.so +3 -0
  34. build/torch26-cxx11-cu126-x86_64-linux/activation/_ops.py +3 -3
  35. build/torch26-cxx11-cu126-x86_64-linux/activation/layers.py +0 -14
  36. build/torch26-cxx98-cu118-x86_64-linux/activation/_activation_2vn6ty3gfqfb6.abi3.so +3 -0
  37. build/torch26-cxx98-cu118-x86_64-linux/activation/_ops.py +3 -3
  38. build/torch26-cxx98-cu118-x86_64-linux/activation/layers.py +0 -14
  39. build/torch26-cxx98-cu124-x86_64-linux/activation/_activation_e99cc09_dirty.abi3.so +0 -3
  40. build/torch26-cxx98-cu124-x86_64-linux/activation/_activation_myvteedxdpqc6.abi3.so +3 -0
  41. build/torch26-cxx98-cu124-x86_64-linux/activation/_ops.py +3 -3
  42. build/torch26-cxx98-cu124-x86_64-linux/activation/layers.py +0 -14
  43. build/torch26-cxx98-cu126-x86_64-linux/activation/_activation_e99cc09_dirty.abi3.so +0 -3
  44. build/torch26-cxx98-cu126-x86_64-linux/activation/_activation_rbswus6emrhm2.abi3.so +3 -0
  45. build/torch26-cxx98-cu126-x86_64-linux/activation/_ops.py +3 -3
  46. build/torch26-cxx98-cu126-x86_64-linux/activation/layers.py +0 -14
  47. build/torch27-cxx11-cu118-x86_64-linux/activation/_activation_e99cc09_dirty.abi3.so +0 -3
  48. build/torch27-cxx11-cu126-x86_64-linux/activation/_activation_e99cc09_dirty.abi3.so +0 -3
  49. build/torch27-cxx11-cu128-x86_64-linux/activation/_activation_e99cc09_dirty.abi3.so +0 -3
  50. flake.lock +0 -168
README.md CHANGED
@@ -2,9 +2,6 @@
2
  tags:
3
  - kernel
4
  ---
5
-
6
- ![Status](https://hubwebhook.dholtz.com/shield?repo=kernels-community/activation)
7
-
8
  ## Activation
9
 
10
  Activation kernels from [vLLM](https://github.com/vllm-project/vllm/blob/main/csrc/activation_kernels.cu).
 
2
  tags:
3
  - kernel
4
  ---
 
 
 
5
  ## Activation
6
 
7
  Activation kernels from [vLLM](https://github.com/vllm-project/vllm/blob/main/csrc/activation_kernels.cu).
build.toml CHANGED
@@ -1,18 +1,17 @@
1
  [general]
2
  name = "activation"
3
- universal = false
4
 
5
  [torch]
6
  src = [
7
- "torch-ext/torch_binding.cpp",
8
- "torch-ext/torch_binding.h",
9
  ]
10
 
11
  [kernel.activation]
12
- backend = "cuda"
13
- depends = ["torch"]
14
  src = [
15
- "activation/activation_kernels.cu",
16
- "activation/cuda_compat.h",
17
- "activation/dispatch_utils.h",
18
  ]
 
 
1
  [general]
2
  name = "activation"
 
3
 
4
  [torch]
5
  src = [
6
+ "torch-ext/torch_binding.cpp",
7
+ "torch-ext/torch_binding.h"
8
  ]
9
 
10
  [kernel.activation]
11
+ cuda-capabilities = [ "7.0", "7.2", "7.5", "8.0", "8.6", "8.7", "8.9", "9.0" ]
 
12
  src = [
13
+ "activation/activation_kernels.cu",
14
+ "activation/cuda_compat.h",
15
+ "activation/dispatch_utils.h",
16
  ]
17
+ depends = [ "torch" ]
build/{torch27-cxx11-cu118-x86_64-linux → torch25-cxx11-cu118-x86_64-linux}/activation/__init__.py RENAMED
File without changes
build/{torch26-cxx11-cu118-x86_64-linux/activation/_activation_e99cc09_dirty.abi3.so → torch25-cxx11-cu118-x86_64-linux/activation/_activation_o63kkyjirmkf4.abi3.so} RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b925dc27b6a9afd5b6d11e454275222c531a92f7ca27958ac81a78c580665e4d
3
- size 2448088
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d50cdabfbed1df74e921ac34ff00bca0555977b14ef8082ddae7b1f30985a494
3
+ size 2370160
build/{torch27-cxx11-cu118-x86_64-linux → torch25-cxx11-cu118-x86_64-linux}/activation/_ops.py RENAMED
@@ -1,9 +1,9 @@
1
  import torch
2
- from . import _activation_e99cc09_dirty
3
- ops = torch.ops._activation_e99cc09_dirty
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
- return f"_activation_e99cc09_dirty::{op_name}"
 
1
  import torch
2
+ from . import _activation_o63kkyjirmkf4
3
+ ops = torch.ops._activation_o63kkyjirmkf4
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
+ return f"_activation_o63kkyjirmkf4::{op_name}"
build/{torch27-cxx11-cu118-x86_64-linux → torch25-cxx11-cu118-x86_64-linux}/activation/layers.py RENAMED
@@ -5,8 +5,6 @@ from ._ops import ops
5
 
6
 
7
  class SiluAndMul(nn.Module):
8
- can_torch_compile: bool = True
9
-
10
  def forward(self, x: torch.Tensor):
11
  d = x.shape[-1] // 2
12
  output_shape = x.shape[:-1] + (d,)
@@ -16,8 +14,6 @@ class SiluAndMul(nn.Module):
16
 
17
 
18
  class GeluAndMul(nn.Module):
19
- can_torch_compile: bool = True
20
-
21
  def forward(self, x: torch.Tensor):
22
  d = x.shape[-1] // 2
23
  output_shape = x.shape[:-1] + (d,)
@@ -27,8 +23,6 @@ class GeluAndMul(nn.Module):
27
 
28
 
29
  class GeluTanhAndMul(nn.Module):
30
- can_torch_compile: bool = True
31
-
32
  def forward(self, x: torch.Tensor):
33
  d = x.shape[-1] // 2
34
  output_shape = x.shape[:-1] + (d,)
@@ -38,8 +32,6 @@ class GeluTanhAndMul(nn.Module):
38
 
39
 
40
  class FatreluAndMul(nn.Module):
41
- can_torch_compile: bool = True
42
-
43
  def __init__(self, threshold: float = 0.0):
44
  super().__init__()
45
  self.threshold = threshold
@@ -53,8 +45,6 @@ class FatreluAndMul(nn.Module):
53
 
54
 
55
  class FastGELU(nn.Module):
56
- can_torch_compile: bool = True
57
-
58
  def forward(self, x: torch.Tensor) -> torch.Tensor:
59
  out = torch.empty_like(x)
60
  ops.gelu_fast(out, x)
@@ -62,8 +52,6 @@ class FastGELU(nn.Module):
62
 
63
 
64
  class NewGELU(nn.Module):
65
- can_torch_compile: bool = True
66
-
67
  def forward(self, x: torch.Tensor) -> torch.Tensor:
68
  out = torch.empty_like(x)
69
  ops.gelu_new(out, x)
@@ -71,8 +59,6 @@ class NewGELU(nn.Module):
71
 
72
 
73
  class QuickGELU(nn.Module):
74
- can_torch_compile: bool = True
75
-
76
  def forward(self, x: torch.Tensor) -> torch.Tensor:
77
  out = torch.empty_like(x)
78
  ops.gelu_quick(out, x)
 
5
 
6
 
7
  class SiluAndMul(nn.Module):
 
 
8
  def forward(self, x: torch.Tensor):
9
  d = x.shape[-1] // 2
10
  output_shape = x.shape[:-1] + (d,)
 
14
 
15
 
16
  class GeluAndMul(nn.Module):
 
 
17
  def forward(self, x: torch.Tensor):
18
  d = x.shape[-1] // 2
19
  output_shape = x.shape[:-1] + (d,)
 
23
 
24
 
25
  class GeluTanhAndMul(nn.Module):
 
 
26
  def forward(self, x: torch.Tensor):
27
  d = x.shape[-1] // 2
28
  output_shape = x.shape[:-1] + (d,)
 
32
 
33
 
34
  class FatreluAndMul(nn.Module):
 
 
35
  def __init__(self, threshold: float = 0.0):
36
  super().__init__()
37
  self.threshold = threshold
 
45
 
46
 
47
  class FastGELU(nn.Module):
 
 
48
  def forward(self, x: torch.Tensor) -> torch.Tensor:
49
  out = torch.empty_like(x)
50
  ops.gelu_fast(out, x)
 
52
 
53
 
54
  class NewGELU(nn.Module):
 
 
55
  def forward(self, x: torch.Tensor) -> torch.Tensor:
56
  out = torch.empty_like(x)
57
  ops.gelu_new(out, x)
 
59
 
60
 
61
  class QuickGELU(nn.Module):
 
 
62
  def forward(self, x: torch.Tensor) -> torch.Tensor:
63
  out = torch.empty_like(x)
64
  ops.gelu_quick(out, x)
build/{torch27-cxx11-cu126-x86_64-linux → torch25-cxx11-cu121-x86_64-linux}/activation/__init__.py RENAMED
File without changes
build/{torch26-cxx11-cu124-x86_64-linux/activation/_activation_e99cc09_dirty.abi3.so → torch25-cxx11-cu121-x86_64-linux/activation/_activation_vrl36m2ejer54.abi3.so} RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:cfdbe510752b57a8dc4671f744bb0a2da5b1646e0b9a19fec02f1505ba044c8c
3
- size 2509960
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2bd0709ef09c8f0c18d1dc4a36c8096c59459bece61f5f5dbea95d1e73f54d44
3
+ size 2393264
build/{torch27-cxx11-cu126-x86_64-linux → torch25-cxx11-cu121-x86_64-linux}/activation/_ops.py RENAMED
@@ -1,9 +1,9 @@
1
  import torch
2
- from . import _activation_e99cc09_dirty
3
- ops = torch.ops._activation_e99cc09_dirty
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
- return f"_activation_e99cc09_dirty::{op_name}"
 
1
  import torch
2
+ from . import _activation_vrl36m2ejer54
3
+ ops = torch.ops._activation_vrl36m2ejer54
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
+ return f"_activation_vrl36m2ejer54::{op_name}"
build/{torch27-cxx11-cu126-x86_64-linux → torch25-cxx11-cu121-x86_64-linux}/activation/layers.py RENAMED
@@ -5,8 +5,6 @@ from ._ops import ops
5
 
6
 
7
  class SiluAndMul(nn.Module):
8
- can_torch_compile: bool = True
9
-
10
  def forward(self, x: torch.Tensor):
11
  d = x.shape[-1] // 2
12
  output_shape = x.shape[:-1] + (d,)
@@ -16,8 +14,6 @@ class SiluAndMul(nn.Module):
16
 
17
 
18
  class GeluAndMul(nn.Module):
19
- can_torch_compile: bool = True
20
-
21
  def forward(self, x: torch.Tensor):
22
  d = x.shape[-1] // 2
23
  output_shape = x.shape[:-1] + (d,)
@@ -27,8 +23,6 @@ class GeluAndMul(nn.Module):
27
 
28
 
29
  class GeluTanhAndMul(nn.Module):
30
- can_torch_compile: bool = True
31
-
32
  def forward(self, x: torch.Tensor):
33
  d = x.shape[-1] // 2
34
  output_shape = x.shape[:-1] + (d,)
@@ -38,8 +32,6 @@ class GeluTanhAndMul(nn.Module):
38
 
39
 
40
  class FatreluAndMul(nn.Module):
41
- can_torch_compile: bool = True
42
-
43
  def __init__(self, threshold: float = 0.0):
44
  super().__init__()
45
  self.threshold = threshold
@@ -53,8 +45,6 @@ class FatreluAndMul(nn.Module):
53
 
54
 
55
  class FastGELU(nn.Module):
56
- can_torch_compile: bool = True
57
-
58
  def forward(self, x: torch.Tensor) -> torch.Tensor:
59
  out = torch.empty_like(x)
60
  ops.gelu_fast(out, x)
@@ -62,8 +52,6 @@ class FastGELU(nn.Module):
62
 
63
 
64
  class NewGELU(nn.Module):
65
- can_torch_compile: bool = True
66
-
67
  def forward(self, x: torch.Tensor) -> torch.Tensor:
68
  out = torch.empty_like(x)
69
  ops.gelu_new(out, x)
@@ -71,8 +59,6 @@ class NewGELU(nn.Module):
71
 
72
 
73
  class QuickGELU(nn.Module):
74
- can_torch_compile: bool = True
75
-
76
  def forward(self, x: torch.Tensor) -> torch.Tensor:
77
  out = torch.empty_like(x)
78
  ops.gelu_quick(out, x)
 
5
 
6
 
7
  class SiluAndMul(nn.Module):
 
 
8
  def forward(self, x: torch.Tensor):
9
  d = x.shape[-1] // 2
10
  output_shape = x.shape[:-1] + (d,)
 
14
 
15
 
16
  class GeluAndMul(nn.Module):
 
 
17
  def forward(self, x: torch.Tensor):
18
  d = x.shape[-1] // 2
19
  output_shape = x.shape[:-1] + (d,)
 
23
 
24
 
25
  class GeluTanhAndMul(nn.Module):
 
 
26
  def forward(self, x: torch.Tensor):
27
  d = x.shape[-1] // 2
28
  output_shape = x.shape[:-1] + (d,)
 
32
 
33
 
34
  class FatreluAndMul(nn.Module):
 
 
35
  def __init__(self, threshold: float = 0.0):
36
  super().__init__()
37
  self.threshold = threshold
 
45
 
46
 
47
  class FastGELU(nn.Module):
 
 
48
  def forward(self, x: torch.Tensor) -> torch.Tensor:
49
  out = torch.empty_like(x)
50
  ops.gelu_fast(out, x)
 
52
 
53
 
54
  class NewGELU(nn.Module):
 
 
55
  def forward(self, x: torch.Tensor) -> torch.Tensor:
56
  out = torch.empty_like(x)
57
  ops.gelu_new(out, x)
 
59
 
60
 
61
  class QuickGELU(nn.Module):
 
 
62
  def forward(self, x: torch.Tensor) -> torch.Tensor:
63
  out = torch.empty_like(x)
64
  ops.gelu_quick(out, x)
build/{torch27-cxx11-cu128-x86_64-linux → torch25-cxx11-cu124-x86_64-linux}/activation/__init__.py RENAMED
File without changes
build/{torch26-cxx11-cu126-x86_64-linux/activation/_activation_e99cc09_dirty.abi3.so → torch25-cxx11-cu124-x86_64-linux/activation/_activation_va3moa75vw7c2.abi3.so} RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:70e544ad6448a5576d26147f48403f3e9e593f4a2e24167dc8acb81ce3b7932e
3
- size 2518600
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8353447f64e7d2df1a6a341d9c53bced53abef267f079923ae774170d0d57c53
3
+ size 2427936
build/{torch27-cxx11-cu128-x86_64-linux → torch25-cxx11-cu124-x86_64-linux}/activation/_ops.py RENAMED
@@ -1,9 +1,9 @@
1
  import torch
2
- from . import _activation_e99cc09_dirty
3
- ops = torch.ops._activation_e99cc09_dirty
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
- return f"_activation_e99cc09_dirty::{op_name}"
 
1
  import torch
2
+ from . import _activation_va3moa75vw7c2
3
+ ops = torch.ops._activation_va3moa75vw7c2
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
+ return f"_activation_va3moa75vw7c2::{op_name}"
build/{torch27-cxx11-cu128-x86_64-linux → torch25-cxx11-cu124-x86_64-linux}/activation/layers.py RENAMED
@@ -5,8 +5,6 @@ from ._ops import ops
5
 
6
 
7
  class SiluAndMul(nn.Module):
8
- can_torch_compile: bool = True
9
-
10
  def forward(self, x: torch.Tensor):
11
  d = x.shape[-1] // 2
12
  output_shape = x.shape[:-1] + (d,)
@@ -16,8 +14,6 @@ class SiluAndMul(nn.Module):
16
 
17
 
18
  class GeluAndMul(nn.Module):
19
- can_torch_compile: bool = True
20
-
21
  def forward(self, x: torch.Tensor):
22
  d = x.shape[-1] // 2
23
  output_shape = x.shape[:-1] + (d,)
@@ -27,8 +23,6 @@ class GeluAndMul(nn.Module):
27
 
28
 
29
  class GeluTanhAndMul(nn.Module):
30
- can_torch_compile: bool = True
31
-
32
  def forward(self, x: torch.Tensor):
33
  d = x.shape[-1] // 2
34
  output_shape = x.shape[:-1] + (d,)
@@ -38,8 +32,6 @@ class GeluTanhAndMul(nn.Module):
38
 
39
 
40
  class FatreluAndMul(nn.Module):
41
- can_torch_compile: bool = True
42
-
43
  def __init__(self, threshold: float = 0.0):
44
  super().__init__()
45
  self.threshold = threshold
@@ -53,8 +45,6 @@ class FatreluAndMul(nn.Module):
53
 
54
 
55
  class FastGELU(nn.Module):
56
- can_torch_compile: bool = True
57
-
58
  def forward(self, x: torch.Tensor) -> torch.Tensor:
59
  out = torch.empty_like(x)
60
  ops.gelu_fast(out, x)
@@ -62,8 +52,6 @@ class FastGELU(nn.Module):
62
 
63
 
64
  class NewGELU(nn.Module):
65
- can_torch_compile: bool = True
66
-
67
  def forward(self, x: torch.Tensor) -> torch.Tensor:
68
  out = torch.empty_like(x)
69
  ops.gelu_new(out, x)
@@ -71,8 +59,6 @@ class NewGELU(nn.Module):
71
 
72
 
73
  class QuickGELU(nn.Module):
74
- can_torch_compile: bool = True
75
-
76
  def forward(self, x: torch.Tensor) -> torch.Tensor:
77
  out = torch.empty_like(x)
78
  ops.gelu_quick(out, x)
 
5
 
6
 
7
  class SiluAndMul(nn.Module):
 
 
8
  def forward(self, x: torch.Tensor):
9
  d = x.shape[-1] // 2
10
  output_shape = x.shape[:-1] + (d,)
 
14
 
15
 
16
  class GeluAndMul(nn.Module):
 
 
17
  def forward(self, x: torch.Tensor):
18
  d = x.shape[-1] // 2
19
  output_shape = x.shape[:-1] + (d,)
 
23
 
24
 
25
  class GeluTanhAndMul(nn.Module):
 
 
26
  def forward(self, x: torch.Tensor):
27
  d = x.shape[-1] // 2
28
  output_shape = x.shape[:-1] + (d,)
 
32
 
33
 
34
  class FatreluAndMul(nn.Module):
 
 
35
  def __init__(self, threshold: float = 0.0):
36
  super().__init__()
37
  self.threshold = threshold
 
45
 
46
 
47
  class FastGELU(nn.Module):
 
 
48
  def forward(self, x: torch.Tensor) -> torch.Tensor:
49
  out = torch.empty_like(x)
50
  ops.gelu_fast(out, x)
 
52
 
53
 
54
  class NewGELU(nn.Module):
 
 
55
  def forward(self, x: torch.Tensor) -> torch.Tensor:
56
  out = torch.empty_like(x)
57
  ops.gelu_new(out, x)
 
59
 
60
 
61
  class QuickGELU(nn.Module):
 
 
62
  def forward(self, x: torch.Tensor) -> torch.Tensor:
63
  out = torch.empty_like(x)
64
  ops.gelu_quick(out, x)
build/torch25-cxx98-cu118-x86_64-linux/activation/__init__.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ from ._ops import ops
4
+
5
+ from . import layers
6
+
7
+
8
+ def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
9
+ ops.silu_and_mul(out, x)
10
+ return out
11
+
12
+
13
+ def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
14
+ ops.gelu_and_mul(out, x)
15
+ return out
16
+
17
+
18
+ def gelu_tanh_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
19
+ ops.gelu_tanh_and_mul(out, x)
20
+ return out
21
+
22
+
23
+ def fatrelu_and_mul(out: torch.Tensor, x: torch.Tensor, threshold: float = 0.0) -> None:
24
+ ops.fatrelu_and_mul(out, x, threshold)
25
+ return out
26
+
27
+
28
+ def gelu_fast(out: torch.Tensor, x: torch.Tensor) -> None:
29
+ ops.gelu_fast(out, x)
30
+ return out
31
+
32
+
33
+ def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
34
+ ops.gelu_new(out, x)
35
+ return out
36
+
37
+
38
+ def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
39
+ ops.gelu_quick(out, x)
40
+ return out
41
+
42
+
43
+ __all__ = [
44
+ "silu_and_mul",
45
+ "gelu_and_mul",
46
+ "gelu_tanh_and_mul",
47
+ "fatrelu_and_mul",
48
+ "gelu_fast",
49
+ "gelu_new",
50
+ "gelu_quick",
51
+ "layers",
52
+ ]
build/{torch26-cxx98-cu118-x86_64-linux/activation/_activation_e99cc09_dirty.abi3.so → torch25-cxx98-cu118-x86_64-linux/activation/_activation_qr3gs3eckeig4.abi3.so} RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:60fd224c33657558f03be5be57cc8d35ade23225b1abd71557b170c8a7010cd1
3
- size 2440576
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df184a6315118d787a1bd6b435cb45f1ca7828445a1f1c0e55c57645cfbba43a
3
+ size 2362600
build/torch25-cxx98-cu118-x86_64-linux/activation/_ops.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from . import _activation_qr3gs3eckeig4
3
+ ops = torch.ops._activation_qr3gs3eckeig4
4
+
5
+ def add_op_namespace_prefix(op_name: str):
6
+ """
7
+ Prefix op by namespace.
8
+ """
9
+ return f"_activation_qr3gs3eckeig4::{op_name}"
build/torch25-cxx98-cu118-x86_64-linux/activation/layers.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+ from ._ops import ops
5
+
6
+
7
+ class SiluAndMul(nn.Module):
8
+ def forward(self, x: torch.Tensor):
9
+ d = x.shape[-1] // 2
10
+ output_shape = x.shape[:-1] + (d,)
11
+ out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
12
+ ops.silu_and_mul(out, x)
13
+ return out
14
+
15
+
16
+ class GeluAndMul(nn.Module):
17
+ def forward(self, x: torch.Tensor):
18
+ d = x.shape[-1] // 2
19
+ output_shape = x.shape[:-1] + (d,)
20
+ out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
21
+ ops.gelu_and_mul(out, x)
22
+ return out
23
+
24
+
25
+ class GeluTanhAndMul(nn.Module):
26
+ def forward(self, x: torch.Tensor):
27
+ d = x.shape[-1] // 2
28
+ output_shape = x.shape[:-1] + (d,)
29
+ out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
30
+ ops.gelu_tanh_and_mul(out, x)
31
+ return out
32
+
33
+
34
+ class FatreluAndMul(nn.Module):
35
+ def __init__(self, threshold: float = 0.0):
36
+ super().__init__()
37
+ self.threshold = threshold
38
+
39
+ def forward(self, x: torch.Tensor):
40
+ d = x.shape[-1] // 2
41
+ output_shape = x.shape[:-1] + (d,)
42
+ out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
43
+ ops.fatrelu_and_mul(out, x, self.threshold)
44
+ return out
45
+
46
+
47
+ class FastGELU(nn.Module):
48
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
49
+ out = torch.empty_like(x)
50
+ ops.gelu_fast(out, x)
51
+ return out
52
+
53
+
54
+ class NewGELU(nn.Module):
55
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
56
+ out = torch.empty_like(x)
57
+ ops.gelu_new(out, x)
58
+ return out
59
+
60
+
61
+ class QuickGELU(nn.Module):
62
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
63
+ out = torch.empty_like(x)
64
+ ops.gelu_quick(out, x)
65
+ return out
build/torch25-cxx98-cu121-x86_64-linux/activation/__init__.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ from ._ops import ops
4
+
5
+ from . import layers
6
+
7
+
8
+ def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
9
+ ops.silu_and_mul(out, x)
10
+ return out
11
+
12
+
13
+ def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
14
+ ops.gelu_and_mul(out, x)
15
+ return out
16
+
17
+
18
+ def gelu_tanh_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
19
+ ops.gelu_tanh_and_mul(out, x)
20
+ return out
21
+
22
+
23
+ def fatrelu_and_mul(out: torch.Tensor, x: torch.Tensor, threshold: float = 0.0) -> None:
24
+ ops.fatrelu_and_mul(out, x, threshold)
25
+ return out
26
+
27
+
28
+ def gelu_fast(out: torch.Tensor, x: torch.Tensor) -> None:
29
+ ops.gelu_fast(out, x)
30
+ return out
31
+
32
+
33
+ def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
34
+ ops.gelu_new(out, x)
35
+ return out
36
+
37
+
38
+ def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
39
+ ops.gelu_quick(out, x)
40
+ return out
41
+
42
+
43
+ __all__ = [
44
+ "silu_and_mul",
45
+ "gelu_and_mul",
46
+ "gelu_tanh_and_mul",
47
+ "fatrelu_and_mul",
48
+ "gelu_fast",
49
+ "gelu_new",
50
+ "gelu_quick",
51
+ "layers",
52
+ ]
build/torch25-cxx98-cu121-x86_64-linux/activation/_activation_p7gbzt25w3zg2.abi3.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ccb13cfc2e45cf483e8b9f77f1760f28b48bcf185508d51b32d45bc759c4e8bb
3
+ size 2385440
build/torch25-cxx98-cu121-x86_64-linux/activation/_ops.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from . import _activation_p7gbzt25w3zg2
3
+ ops = torch.ops._activation_p7gbzt25w3zg2
4
+
5
+ def add_op_namespace_prefix(op_name: str):
6
+ """
7
+ Prefix op by namespace.
8
+ """
9
+ return f"_activation_p7gbzt25w3zg2::{op_name}"
build/torch25-cxx98-cu121-x86_64-linux/activation/layers.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+ from ._ops import ops
5
+
6
+
7
+ class SiluAndMul(nn.Module):
8
+ def forward(self, x: torch.Tensor):
9
+ d = x.shape[-1] // 2
10
+ output_shape = x.shape[:-1] + (d,)
11
+ out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
12
+ ops.silu_and_mul(out, x)
13
+ return out
14
+
15
+
16
+ class GeluAndMul(nn.Module):
17
+ def forward(self, x: torch.Tensor):
18
+ d = x.shape[-1] // 2
19
+ output_shape = x.shape[:-1] + (d,)
20
+ out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
21
+ ops.gelu_and_mul(out, x)
22
+ return out
23
+
24
+
25
+ class GeluTanhAndMul(nn.Module):
26
+ def forward(self, x: torch.Tensor):
27
+ d = x.shape[-1] // 2
28
+ output_shape = x.shape[:-1] + (d,)
29
+ out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
30
+ ops.gelu_tanh_and_mul(out, x)
31
+ return out
32
+
33
+
34
+ class FatreluAndMul(nn.Module):
35
+ def __init__(self, threshold: float = 0.0):
36
+ super().__init__()
37
+ self.threshold = threshold
38
+
39
+ def forward(self, x: torch.Tensor):
40
+ d = x.shape[-1] // 2
41
+ output_shape = x.shape[:-1] + (d,)
42
+ out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
43
+ ops.fatrelu_and_mul(out, x, self.threshold)
44
+ return out
45
+
46
+
47
+ class FastGELU(nn.Module):
48
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
49
+ out = torch.empty_like(x)
50
+ ops.gelu_fast(out, x)
51
+ return out
52
+
53
+
54
+ class NewGELU(nn.Module):
55
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
56
+ out = torch.empty_like(x)
57
+ ops.gelu_new(out, x)
58
+ return out
59
+
60
+
61
+ class QuickGELU(nn.Module):
62
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
63
+ out = torch.empty_like(x)
64
+ ops.gelu_quick(out, x)
65
+ return out
build/torch25-cxx98-cu124-x86_64-linux/activation/__init__.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ from ._ops import ops
4
+
5
+ from . import layers
6
+
7
+
8
+ def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
9
+ ops.silu_and_mul(out, x)
10
+ return out
11
+
12
+
13
+ def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
14
+ ops.gelu_and_mul(out, x)
15
+ return out
16
+
17
+
18
+ def gelu_tanh_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
19
+ ops.gelu_tanh_and_mul(out, x)
20
+ return out
21
+
22
+
23
+ def fatrelu_and_mul(out: torch.Tensor, x: torch.Tensor, threshold: float = 0.0) -> None:
24
+ ops.fatrelu_and_mul(out, x, threshold)
25
+ return out
26
+
27
+
28
+ def gelu_fast(out: torch.Tensor, x: torch.Tensor) -> None:
29
+ ops.gelu_fast(out, x)
30
+ return out
31
+
32
+
33
+ def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
34
+ ops.gelu_new(out, x)
35
+ return out
36
+
37
+
38
+ def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
39
+ ops.gelu_quick(out, x)
40
+ return out
41
+
42
+
43
+ __all__ = [
44
+ "silu_and_mul",
45
+ "gelu_and_mul",
46
+ "gelu_tanh_and_mul",
47
+ "fatrelu_and_mul",
48
+ "gelu_fast",
49
+ "gelu_new",
50
+ "gelu_quick",
51
+ "layers",
52
+ ]
build/torch25-cxx98-cu124-x86_64-linux/activation/_activation_jg7yaigtn7wco.abi3.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f8048853e8cb06e8574a9a9497800d2be438f7989d79f44dcf2e0ced38a75a9
3
+ size 2420192
build/torch25-cxx98-cu124-x86_64-linux/activation/_ops.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from . import _activation_jg7yaigtn7wco
3
+ ops = torch.ops._activation_jg7yaigtn7wco
4
+
5
+ def add_op_namespace_prefix(op_name: str):
6
+ """
7
+ Prefix op by namespace.
8
+ """
9
+ return f"_activation_jg7yaigtn7wco::{op_name}"
build/torch25-cxx98-cu124-x86_64-linux/activation/layers.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+ from ._ops import ops
5
+
6
+
7
+ class SiluAndMul(nn.Module):
8
+ def forward(self, x: torch.Tensor):
9
+ d = x.shape[-1] // 2
10
+ output_shape = x.shape[:-1] + (d,)
11
+ out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
12
+ ops.silu_and_mul(out, x)
13
+ return out
14
+
15
+
16
+ class GeluAndMul(nn.Module):
17
+ def forward(self, x: torch.Tensor):
18
+ d = x.shape[-1] // 2
19
+ output_shape = x.shape[:-1] + (d,)
20
+ out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
21
+ ops.gelu_and_mul(out, x)
22
+ return out
23
+
24
+
25
+ class GeluTanhAndMul(nn.Module):
26
+ def forward(self, x: torch.Tensor):
27
+ d = x.shape[-1] // 2
28
+ output_shape = x.shape[:-1] + (d,)
29
+ out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
30
+ ops.gelu_tanh_and_mul(out, x)
31
+ return out
32
+
33
+
34
+ class FatreluAndMul(nn.Module):
35
+ def __init__(self, threshold: float = 0.0):
36
+ super().__init__()
37
+ self.threshold = threshold
38
+
39
+ def forward(self, x: torch.Tensor):
40
+ d = x.shape[-1] // 2
41
+ output_shape = x.shape[:-1] + (d,)
42
+ out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
43
+ ops.fatrelu_and_mul(out, x, self.threshold)
44
+ return out
45
+
46
+
47
+ class FastGELU(nn.Module):
48
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
49
+ out = torch.empty_like(x)
50
+ ops.gelu_fast(out, x)
51
+ return out
52
+
53
+
54
+ class NewGELU(nn.Module):
55
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
56
+ out = torch.empty_like(x)
57
+ ops.gelu_new(out, x)
58
+ return out
59
+
60
+
61
+ class QuickGELU(nn.Module):
62
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
63
+ out = torch.empty_like(x)
64
+ ops.gelu_quick(out, x)
65
+ return out
build/torch26-cxx11-cu118-x86_64-linux/activation/_activation_ncisyrun7guwk.abi3.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cde5439e78ba0e1aaa1937d798b214b46d38cbab8e4384b93a22239fed1a4dd4
3
+ size 2370264
build/torch26-cxx11-cu118-x86_64-linux/activation/_ops.py CHANGED
@@ -1,9 +1,9 @@
1
  import torch
2
- from . import _activation_e99cc09_dirty
3
- ops = torch.ops._activation_e99cc09_dirty
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
- return f"_activation_e99cc09_dirty::{op_name}"
 
1
  import torch
2
+ from . import _activation_ncisyrun7guwk
3
+ ops = torch.ops._activation_ncisyrun7guwk
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
+ return f"_activation_ncisyrun7guwk::{op_name}"
build/torch26-cxx11-cu118-x86_64-linux/activation/layers.py CHANGED
@@ -5,8 +5,6 @@ from ._ops import ops
5
 
6
 
7
  class SiluAndMul(nn.Module):
8
- can_torch_compile: bool = True
9
-
10
  def forward(self, x: torch.Tensor):
11
  d = x.shape[-1] // 2
12
  output_shape = x.shape[:-1] + (d,)
@@ -16,8 +14,6 @@ class SiluAndMul(nn.Module):
16
 
17
 
18
  class GeluAndMul(nn.Module):
19
- can_torch_compile: bool = True
20
-
21
  def forward(self, x: torch.Tensor):
22
  d = x.shape[-1] // 2
23
  output_shape = x.shape[:-1] + (d,)
@@ -27,8 +23,6 @@ class GeluAndMul(nn.Module):
27
 
28
 
29
  class GeluTanhAndMul(nn.Module):
30
- can_torch_compile: bool = True
31
-
32
  def forward(self, x: torch.Tensor):
33
  d = x.shape[-1] // 2
34
  output_shape = x.shape[:-1] + (d,)
@@ -38,8 +32,6 @@ class GeluTanhAndMul(nn.Module):
38
 
39
 
40
  class FatreluAndMul(nn.Module):
41
- can_torch_compile: bool = True
42
-
43
  def __init__(self, threshold: float = 0.0):
44
  super().__init__()
45
  self.threshold = threshold
@@ -53,8 +45,6 @@ class FatreluAndMul(nn.Module):
53
 
54
 
55
  class FastGELU(nn.Module):
56
- can_torch_compile: bool = True
57
-
58
  def forward(self, x: torch.Tensor) -> torch.Tensor:
59
  out = torch.empty_like(x)
60
  ops.gelu_fast(out, x)
@@ -62,8 +52,6 @@ class FastGELU(nn.Module):
62
 
63
 
64
  class NewGELU(nn.Module):
65
- can_torch_compile: bool = True
66
-
67
  def forward(self, x: torch.Tensor) -> torch.Tensor:
68
  out = torch.empty_like(x)
69
  ops.gelu_new(out, x)
@@ -71,8 +59,6 @@ class NewGELU(nn.Module):
71
 
72
 
73
  class QuickGELU(nn.Module):
74
- can_torch_compile: bool = True
75
-
76
  def forward(self, x: torch.Tensor) -> torch.Tensor:
77
  out = torch.empty_like(x)
78
  ops.gelu_quick(out, x)
 
5
 
6
 
7
  class SiluAndMul(nn.Module):
 
 
8
  def forward(self, x: torch.Tensor):
9
  d = x.shape[-1] // 2
10
  output_shape = x.shape[:-1] + (d,)
 
14
 
15
 
16
  class GeluAndMul(nn.Module):
 
 
17
  def forward(self, x: torch.Tensor):
18
  d = x.shape[-1] // 2
19
  output_shape = x.shape[:-1] + (d,)
 
23
 
24
 
25
  class GeluTanhAndMul(nn.Module):
 
 
26
  def forward(self, x: torch.Tensor):
27
  d = x.shape[-1] // 2
28
  output_shape = x.shape[:-1] + (d,)
 
32
 
33
 
34
  class FatreluAndMul(nn.Module):
 
 
35
  def __init__(self, threshold: float = 0.0):
36
  super().__init__()
37
  self.threshold = threshold
 
45
 
46
 
47
  class FastGELU(nn.Module):
 
 
48
  def forward(self, x: torch.Tensor) -> torch.Tensor:
49
  out = torch.empty_like(x)
50
  ops.gelu_fast(out, x)
 
52
 
53
 
54
  class NewGELU(nn.Module):
 
 
55
  def forward(self, x: torch.Tensor) -> torch.Tensor:
56
  out = torch.empty_like(x)
57
  ops.gelu_new(out, x)
 
59
 
60
 
61
  class QuickGELU(nn.Module):
 
 
62
  def forward(self, x: torch.Tensor) -> torch.Tensor:
63
  out = torch.empty_like(x)
64
  ops.gelu_quick(out, x)
build/torch26-cxx11-cu124-x86_64-linux/activation/_activation_ochhfvlnc3vyc.abi3.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6bd20d411c51fc8729b15cab6a60c5c9185222474aa035489e1bff299d76682
3
+ size 2428040
build/torch26-cxx11-cu124-x86_64-linux/activation/_ops.py CHANGED
@@ -1,9 +1,9 @@
1
  import torch
2
- from . import _activation_e99cc09_dirty
3
- ops = torch.ops._activation_e99cc09_dirty
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
- return f"_activation_e99cc09_dirty::{op_name}"
 
1
  import torch
2
+ from . import _activation_ochhfvlnc3vyc
3
+ ops = torch.ops._activation_ochhfvlnc3vyc
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
+ return f"_activation_ochhfvlnc3vyc::{op_name}"
build/torch26-cxx11-cu124-x86_64-linux/activation/layers.py CHANGED
@@ -5,8 +5,6 @@ from ._ops import ops
5
 
6
 
7
  class SiluAndMul(nn.Module):
8
- can_torch_compile: bool = True
9
-
10
  def forward(self, x: torch.Tensor):
11
  d = x.shape[-1] // 2
12
  output_shape = x.shape[:-1] + (d,)
@@ -16,8 +14,6 @@ class SiluAndMul(nn.Module):
16
 
17
 
18
  class GeluAndMul(nn.Module):
19
- can_torch_compile: bool = True
20
-
21
  def forward(self, x: torch.Tensor):
22
  d = x.shape[-1] // 2
23
  output_shape = x.shape[:-1] + (d,)
@@ -27,8 +23,6 @@ class GeluAndMul(nn.Module):
27
 
28
 
29
  class GeluTanhAndMul(nn.Module):
30
- can_torch_compile: bool = True
31
-
32
  def forward(self, x: torch.Tensor):
33
  d = x.shape[-1] // 2
34
  output_shape = x.shape[:-1] + (d,)
@@ -38,8 +32,6 @@ class GeluTanhAndMul(nn.Module):
38
 
39
 
40
  class FatreluAndMul(nn.Module):
41
- can_torch_compile: bool = True
42
-
43
  def __init__(self, threshold: float = 0.0):
44
  super().__init__()
45
  self.threshold = threshold
@@ -53,8 +45,6 @@ class FatreluAndMul(nn.Module):
53
 
54
 
55
  class FastGELU(nn.Module):
56
- can_torch_compile: bool = True
57
-
58
  def forward(self, x: torch.Tensor) -> torch.Tensor:
59
  out = torch.empty_like(x)
60
  ops.gelu_fast(out, x)
@@ -62,8 +52,6 @@ class FastGELU(nn.Module):
62
 
63
 
64
  class NewGELU(nn.Module):
65
- can_torch_compile: bool = True
66
-
67
  def forward(self, x: torch.Tensor) -> torch.Tensor:
68
  out = torch.empty_like(x)
69
  ops.gelu_new(out, x)
@@ -71,8 +59,6 @@ class NewGELU(nn.Module):
71
 
72
 
73
  class QuickGELU(nn.Module):
74
- can_torch_compile: bool = True
75
-
76
  def forward(self, x: torch.Tensor) -> torch.Tensor:
77
  out = torch.empty_like(x)
78
  ops.gelu_quick(out, x)
 
5
 
6
 
7
  class SiluAndMul(nn.Module):
 
 
8
  def forward(self, x: torch.Tensor):
9
  d = x.shape[-1] // 2
10
  output_shape = x.shape[:-1] + (d,)
 
14
 
15
 
16
  class GeluAndMul(nn.Module):
 
 
17
  def forward(self, x: torch.Tensor):
18
  d = x.shape[-1] // 2
19
  output_shape = x.shape[:-1] + (d,)
 
23
 
24
 
25
  class GeluTanhAndMul(nn.Module):
 
 
26
  def forward(self, x: torch.Tensor):
27
  d = x.shape[-1] // 2
28
  output_shape = x.shape[:-1] + (d,)
 
32
 
33
 
34
  class FatreluAndMul(nn.Module):
 
 
35
  def __init__(self, threshold: float = 0.0):
36
  super().__init__()
37
  self.threshold = threshold
 
45
 
46
 
47
  class FastGELU(nn.Module):
 
 
48
  def forward(self, x: torch.Tensor) -> torch.Tensor:
49
  out = torch.empty_like(x)
50
  ops.gelu_fast(out, x)
 
52
 
53
 
54
  class NewGELU(nn.Module):
 
 
55
  def forward(self, x: torch.Tensor) -> torch.Tensor:
56
  out = torch.empty_like(x)
57
  ops.gelu_new(out, x)
 
59
 
60
 
61
  class QuickGELU(nn.Module):
 
 
62
  def forward(self, x: torch.Tensor) -> torch.Tensor:
63
  out = torch.empty_like(x)
64
  ops.gelu_quick(out, x)
build/torch26-cxx11-cu126-x86_64-linux/activation/_activation_u6vnqubnicksq.abi3.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41c18b20c2bf8c49d2d3088a9bc1aad4293df0b57eafc9b141a9e8e595fe551a
3
+ size 2436672
build/torch26-cxx11-cu126-x86_64-linux/activation/_ops.py CHANGED
@@ -1,9 +1,9 @@
1
  import torch
2
- from . import _activation_e99cc09_dirty
3
- ops = torch.ops._activation_e99cc09_dirty
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
- return f"_activation_e99cc09_dirty::{op_name}"
 
1
  import torch
2
+ from . import _activation_u6vnqubnicksq
3
+ ops = torch.ops._activation_u6vnqubnicksq
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
+ return f"_activation_u6vnqubnicksq::{op_name}"
build/torch26-cxx11-cu126-x86_64-linux/activation/layers.py CHANGED
@@ -5,8 +5,6 @@ from ._ops import ops
5
 
6
 
7
  class SiluAndMul(nn.Module):
8
- can_torch_compile: bool = True
9
-
10
  def forward(self, x: torch.Tensor):
11
  d = x.shape[-1] // 2
12
  output_shape = x.shape[:-1] + (d,)
@@ -16,8 +14,6 @@ class SiluAndMul(nn.Module):
16
 
17
 
18
  class GeluAndMul(nn.Module):
19
- can_torch_compile: bool = True
20
-
21
  def forward(self, x: torch.Tensor):
22
  d = x.shape[-1] // 2
23
  output_shape = x.shape[:-1] + (d,)
@@ -27,8 +23,6 @@ class GeluAndMul(nn.Module):
27
 
28
 
29
  class GeluTanhAndMul(nn.Module):
30
- can_torch_compile: bool = True
31
-
32
  def forward(self, x: torch.Tensor):
33
  d = x.shape[-1] // 2
34
  output_shape = x.shape[:-1] + (d,)
@@ -38,8 +32,6 @@ class GeluTanhAndMul(nn.Module):
38
 
39
 
40
  class FatreluAndMul(nn.Module):
41
- can_torch_compile: bool = True
42
-
43
  def __init__(self, threshold: float = 0.0):
44
  super().__init__()
45
  self.threshold = threshold
@@ -53,8 +45,6 @@ class FatreluAndMul(nn.Module):
53
 
54
 
55
  class FastGELU(nn.Module):
56
- can_torch_compile: bool = True
57
-
58
  def forward(self, x: torch.Tensor) -> torch.Tensor:
59
  out = torch.empty_like(x)
60
  ops.gelu_fast(out, x)
@@ -62,8 +52,6 @@ class FastGELU(nn.Module):
62
 
63
 
64
  class NewGELU(nn.Module):
65
- can_torch_compile: bool = True
66
-
67
  def forward(self, x: torch.Tensor) -> torch.Tensor:
68
  out = torch.empty_like(x)
69
  ops.gelu_new(out, x)
@@ -71,8 +59,6 @@ class NewGELU(nn.Module):
71
 
72
 
73
  class QuickGELU(nn.Module):
74
- can_torch_compile: bool = True
75
-
76
  def forward(self, x: torch.Tensor) -> torch.Tensor:
77
  out = torch.empty_like(x)
78
  ops.gelu_quick(out, x)
 
5
 
6
 
7
  class SiluAndMul(nn.Module):
 
 
8
  def forward(self, x: torch.Tensor):
9
  d = x.shape[-1] // 2
10
  output_shape = x.shape[:-1] + (d,)
 
14
 
15
 
16
  class GeluAndMul(nn.Module):
 
 
17
  def forward(self, x: torch.Tensor):
18
  d = x.shape[-1] // 2
19
  output_shape = x.shape[:-1] + (d,)
 
23
 
24
 
25
  class GeluTanhAndMul(nn.Module):
 
 
26
  def forward(self, x: torch.Tensor):
27
  d = x.shape[-1] // 2
28
  output_shape = x.shape[:-1] + (d,)
 
32
 
33
 
34
  class FatreluAndMul(nn.Module):
 
 
35
  def __init__(self, threshold: float = 0.0):
36
  super().__init__()
37
  self.threshold = threshold
 
45
 
46
 
47
  class FastGELU(nn.Module):
 
 
48
  def forward(self, x: torch.Tensor) -> torch.Tensor:
49
  out = torch.empty_like(x)
50
  ops.gelu_fast(out, x)
 
52
 
53
 
54
  class NewGELU(nn.Module):
 
 
55
  def forward(self, x: torch.Tensor) -> torch.Tensor:
56
  out = torch.empty_like(x)
57
  ops.gelu_new(out, x)
 
59
 
60
 
61
  class QuickGELU(nn.Module):
 
 
62
  def forward(self, x: torch.Tensor) -> torch.Tensor:
63
  out = torch.empty_like(x)
64
  ops.gelu_quick(out, x)
build/torch26-cxx98-cu118-x86_64-linux/activation/_activation_2vn6ty3gfqfb6.abi3.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfbcd5da358cd5cb7982d19c8880cf4db6f08b46622a7a953f755ad59e4e1492
3
+ size 2362752
build/torch26-cxx98-cu118-x86_64-linux/activation/_ops.py CHANGED
@@ -1,9 +1,9 @@
1
  import torch
2
- from . import _activation_e99cc09_dirty
3
- ops = torch.ops._activation_e99cc09_dirty
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
- return f"_activation_e99cc09_dirty::{op_name}"
 
1
  import torch
2
+ from . import _activation_2vn6ty3gfqfb6
3
+ ops = torch.ops._activation_2vn6ty3gfqfb6
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
+ return f"_activation_2vn6ty3gfqfb6::{op_name}"
build/torch26-cxx98-cu118-x86_64-linux/activation/layers.py CHANGED
@@ -5,8 +5,6 @@ from ._ops import ops
5
 
6
 
7
  class SiluAndMul(nn.Module):
8
- can_torch_compile: bool = True
9
-
10
  def forward(self, x: torch.Tensor):
11
  d = x.shape[-1] // 2
12
  output_shape = x.shape[:-1] + (d,)
@@ -16,8 +14,6 @@ class SiluAndMul(nn.Module):
16
 
17
 
18
  class GeluAndMul(nn.Module):
19
- can_torch_compile: bool = True
20
-
21
  def forward(self, x: torch.Tensor):
22
  d = x.shape[-1] // 2
23
  output_shape = x.shape[:-1] + (d,)
@@ -27,8 +23,6 @@ class GeluAndMul(nn.Module):
27
 
28
 
29
  class GeluTanhAndMul(nn.Module):
30
- can_torch_compile: bool = True
31
-
32
  def forward(self, x: torch.Tensor):
33
  d = x.shape[-1] // 2
34
  output_shape = x.shape[:-1] + (d,)
@@ -38,8 +32,6 @@ class GeluTanhAndMul(nn.Module):
38
 
39
 
40
  class FatreluAndMul(nn.Module):
41
- can_torch_compile: bool = True
42
-
43
  def __init__(self, threshold: float = 0.0):
44
  super().__init__()
45
  self.threshold = threshold
@@ -53,8 +45,6 @@ class FatreluAndMul(nn.Module):
53
 
54
 
55
  class FastGELU(nn.Module):
56
- can_torch_compile: bool = True
57
-
58
  def forward(self, x: torch.Tensor) -> torch.Tensor:
59
  out = torch.empty_like(x)
60
  ops.gelu_fast(out, x)
@@ -62,8 +52,6 @@ class FastGELU(nn.Module):
62
 
63
 
64
  class NewGELU(nn.Module):
65
- can_torch_compile: bool = True
66
-
67
  def forward(self, x: torch.Tensor) -> torch.Tensor:
68
  out = torch.empty_like(x)
69
  ops.gelu_new(out, x)
@@ -71,8 +59,6 @@ class NewGELU(nn.Module):
71
 
72
 
73
  class QuickGELU(nn.Module):
74
- can_torch_compile: bool = True
75
-
76
  def forward(self, x: torch.Tensor) -> torch.Tensor:
77
  out = torch.empty_like(x)
78
  ops.gelu_quick(out, x)
 
5
 
6
 
7
  class SiluAndMul(nn.Module):
 
 
8
  def forward(self, x: torch.Tensor):
9
  d = x.shape[-1] // 2
10
  output_shape = x.shape[:-1] + (d,)
 
14
 
15
 
16
  class GeluAndMul(nn.Module):
 
 
17
  def forward(self, x: torch.Tensor):
18
  d = x.shape[-1] // 2
19
  output_shape = x.shape[:-1] + (d,)
 
23
 
24
 
25
  class GeluTanhAndMul(nn.Module):
 
 
26
  def forward(self, x: torch.Tensor):
27
  d = x.shape[-1] // 2
28
  output_shape = x.shape[:-1] + (d,)
 
32
 
33
 
34
  class FatreluAndMul(nn.Module):
 
 
35
  def __init__(self, threshold: float = 0.0):
36
  super().__init__()
37
  self.threshold = threshold
 
45
 
46
 
47
  class FastGELU(nn.Module):
 
 
48
  def forward(self, x: torch.Tensor) -> torch.Tensor:
49
  out = torch.empty_like(x)
50
  ops.gelu_fast(out, x)
 
52
 
53
 
54
  class NewGELU(nn.Module):
 
 
55
  def forward(self, x: torch.Tensor) -> torch.Tensor:
56
  out = torch.empty_like(x)
57
  ops.gelu_new(out, x)
 
59
 
60
 
61
  class QuickGELU(nn.Module):
 
 
62
  def forward(self, x: torch.Tensor) -> torch.Tensor:
63
  out = torch.empty_like(x)
64
  ops.gelu_quick(out, x)
build/torch26-cxx98-cu124-x86_64-linux/activation/_activation_e99cc09_dirty.abi3.so DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:e364773259dc1b91f3c0d3b076da83c5a9c6ee18ffdace30315c602dffd1dabe
3
- size 2502264
 
 
 
 
build/torch26-cxx98-cu124-x86_64-linux/activation/_activation_myvteedxdpqc6.abi3.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1bc928823117c800904bcd3492bf1a0c65a32f6d8a842dc039f55e29831ab49
3
+ size 2420344
build/torch26-cxx98-cu124-x86_64-linux/activation/_ops.py CHANGED
@@ -1,9 +1,9 @@
1
  import torch
2
- from . import _activation_e99cc09_dirty
3
- ops = torch.ops._activation_e99cc09_dirty
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
- return f"_activation_e99cc09_dirty::{op_name}"
 
1
  import torch
2
+ from . import _activation_myvteedxdpqc6
3
+ ops = torch.ops._activation_myvteedxdpqc6
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
+ return f"_activation_myvteedxdpqc6::{op_name}"
build/torch26-cxx98-cu124-x86_64-linux/activation/layers.py CHANGED
@@ -5,8 +5,6 @@ from ._ops import ops
5
 
6
 
7
  class SiluAndMul(nn.Module):
8
- can_torch_compile: bool = True
9
-
10
  def forward(self, x: torch.Tensor):
11
  d = x.shape[-1] // 2
12
  output_shape = x.shape[:-1] + (d,)
@@ -16,8 +14,6 @@ class SiluAndMul(nn.Module):
16
 
17
 
18
  class GeluAndMul(nn.Module):
19
- can_torch_compile: bool = True
20
-
21
  def forward(self, x: torch.Tensor):
22
  d = x.shape[-1] // 2
23
  output_shape = x.shape[:-1] + (d,)
@@ -27,8 +23,6 @@ class GeluAndMul(nn.Module):
27
 
28
 
29
  class GeluTanhAndMul(nn.Module):
30
- can_torch_compile: bool = True
31
-
32
  def forward(self, x: torch.Tensor):
33
  d = x.shape[-1] // 2
34
  output_shape = x.shape[:-1] + (d,)
@@ -38,8 +32,6 @@ class GeluTanhAndMul(nn.Module):
38
 
39
 
40
  class FatreluAndMul(nn.Module):
41
- can_torch_compile: bool = True
42
-
43
  def __init__(self, threshold: float = 0.0):
44
  super().__init__()
45
  self.threshold = threshold
@@ -53,8 +45,6 @@ class FatreluAndMul(nn.Module):
53
 
54
 
55
  class FastGELU(nn.Module):
56
- can_torch_compile: bool = True
57
-
58
  def forward(self, x: torch.Tensor) -> torch.Tensor:
59
  out = torch.empty_like(x)
60
  ops.gelu_fast(out, x)
@@ -62,8 +52,6 @@ class FastGELU(nn.Module):
62
 
63
 
64
  class NewGELU(nn.Module):
65
- can_torch_compile: bool = True
66
-
67
  def forward(self, x: torch.Tensor) -> torch.Tensor:
68
  out = torch.empty_like(x)
69
  ops.gelu_new(out, x)
@@ -71,8 +59,6 @@ class NewGELU(nn.Module):
71
 
72
 
73
  class QuickGELU(nn.Module):
74
- can_torch_compile: bool = True
75
-
76
  def forward(self, x: torch.Tensor) -> torch.Tensor:
77
  out = torch.empty_like(x)
78
  ops.gelu_quick(out, x)
 
5
 
6
 
7
  class SiluAndMul(nn.Module):
 
 
8
  def forward(self, x: torch.Tensor):
9
  d = x.shape[-1] // 2
10
  output_shape = x.shape[:-1] + (d,)
 
14
 
15
 
16
  class GeluAndMul(nn.Module):
 
 
17
  def forward(self, x: torch.Tensor):
18
  d = x.shape[-1] // 2
19
  output_shape = x.shape[:-1] + (d,)
 
23
 
24
 
25
  class GeluTanhAndMul(nn.Module):
 
 
26
  def forward(self, x: torch.Tensor):
27
  d = x.shape[-1] // 2
28
  output_shape = x.shape[:-1] + (d,)
 
32
 
33
 
34
  class FatreluAndMul(nn.Module):
 
 
35
  def __init__(self, threshold: float = 0.0):
36
  super().__init__()
37
  self.threshold = threshold
 
45
 
46
 
47
  class FastGELU(nn.Module):
 
 
48
  def forward(self, x: torch.Tensor) -> torch.Tensor:
49
  out = torch.empty_like(x)
50
  ops.gelu_fast(out, x)
 
52
 
53
 
54
  class NewGELU(nn.Module):
 
 
55
  def forward(self, x: torch.Tensor) -> torch.Tensor:
56
  out = torch.empty_like(x)
57
  ops.gelu_new(out, x)
 
59
 
60
 
61
  class QuickGELU(nn.Module):
 
 
62
  def forward(self, x: torch.Tensor) -> torch.Tensor:
63
  out = torch.empty_like(x)
64
  ops.gelu_quick(out, x)
build/torch26-cxx98-cu126-x86_64-linux/activation/_activation_e99cc09_dirty.abi3.so DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:7ac88cc0d3c65ab283d20608f3a097be29ee572e7856f10f8d7919536efd95b4
3
- size 2506808
 
 
 
 
build/torch26-cxx98-cu126-x86_64-linux/activation/_activation_rbswus6emrhm2.abi3.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:474727e434a9cd4ec984a6da7124992ead4ca0fefce9581d0fd503e36c065aed
3
+ size 2424888
build/torch26-cxx98-cu126-x86_64-linux/activation/_ops.py CHANGED
@@ -1,9 +1,9 @@
1
  import torch
2
- from . import _activation_e99cc09_dirty
3
- ops = torch.ops._activation_e99cc09_dirty
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
- return f"_activation_e99cc09_dirty::{op_name}"
 
1
  import torch
2
+ from . import _activation_rbswus6emrhm2
3
+ ops = torch.ops._activation_rbswus6emrhm2
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
+ return f"_activation_rbswus6emrhm2::{op_name}"
build/torch26-cxx98-cu126-x86_64-linux/activation/layers.py CHANGED
@@ -5,8 +5,6 @@ from ._ops import ops
5
 
6
 
7
  class SiluAndMul(nn.Module):
8
- can_torch_compile: bool = True
9
-
10
  def forward(self, x: torch.Tensor):
11
  d = x.shape[-1] // 2
12
  output_shape = x.shape[:-1] + (d,)
@@ -16,8 +14,6 @@ class SiluAndMul(nn.Module):
16
 
17
 
18
  class GeluAndMul(nn.Module):
19
- can_torch_compile: bool = True
20
-
21
  def forward(self, x: torch.Tensor):
22
  d = x.shape[-1] // 2
23
  output_shape = x.shape[:-1] + (d,)
@@ -27,8 +23,6 @@ class GeluAndMul(nn.Module):
27
 
28
 
29
  class GeluTanhAndMul(nn.Module):
30
- can_torch_compile: bool = True
31
-
32
  def forward(self, x: torch.Tensor):
33
  d = x.shape[-1] // 2
34
  output_shape = x.shape[:-1] + (d,)
@@ -38,8 +32,6 @@ class GeluTanhAndMul(nn.Module):
38
 
39
 
40
  class FatreluAndMul(nn.Module):
41
- can_torch_compile: bool = True
42
-
43
  def __init__(self, threshold: float = 0.0):
44
  super().__init__()
45
  self.threshold = threshold
@@ -53,8 +45,6 @@ class FatreluAndMul(nn.Module):
53
 
54
 
55
  class FastGELU(nn.Module):
56
- can_torch_compile: bool = True
57
-
58
  def forward(self, x: torch.Tensor) -> torch.Tensor:
59
  out = torch.empty_like(x)
60
  ops.gelu_fast(out, x)
@@ -62,8 +52,6 @@ class FastGELU(nn.Module):
62
 
63
 
64
  class NewGELU(nn.Module):
65
- can_torch_compile: bool = True
66
-
67
  def forward(self, x: torch.Tensor) -> torch.Tensor:
68
  out = torch.empty_like(x)
69
  ops.gelu_new(out, x)
@@ -71,8 +59,6 @@ class NewGELU(nn.Module):
71
 
72
 
73
  class QuickGELU(nn.Module):
74
- can_torch_compile: bool = True
75
-
76
  def forward(self, x: torch.Tensor) -> torch.Tensor:
77
  out = torch.empty_like(x)
78
  ops.gelu_quick(out, x)
 
5
 
6
 
7
  class SiluAndMul(nn.Module):
 
 
8
  def forward(self, x: torch.Tensor):
9
  d = x.shape[-1] // 2
10
  output_shape = x.shape[:-1] + (d,)
 
14
 
15
 
16
  class GeluAndMul(nn.Module):
 
 
17
  def forward(self, x: torch.Tensor):
18
  d = x.shape[-1] // 2
19
  output_shape = x.shape[:-1] + (d,)
 
23
 
24
 
25
  class GeluTanhAndMul(nn.Module):
 
 
26
  def forward(self, x: torch.Tensor):
27
  d = x.shape[-1] // 2
28
  output_shape = x.shape[:-1] + (d,)
 
32
 
33
 
34
  class FatreluAndMul(nn.Module):
 
 
35
  def __init__(self, threshold: float = 0.0):
36
  super().__init__()
37
  self.threshold = threshold
 
45
 
46
 
47
  class FastGELU(nn.Module):
 
 
48
  def forward(self, x: torch.Tensor) -> torch.Tensor:
49
  out = torch.empty_like(x)
50
  ops.gelu_fast(out, x)
 
52
 
53
 
54
  class NewGELU(nn.Module):
 
 
55
  def forward(self, x: torch.Tensor) -> torch.Tensor:
56
  out = torch.empty_like(x)
57
  ops.gelu_new(out, x)
 
59
 
60
 
61
  class QuickGELU(nn.Module):
 
 
62
  def forward(self, x: torch.Tensor) -> torch.Tensor:
63
  out = torch.empty_like(x)
64
  ops.gelu_quick(out, x)
build/torch27-cxx11-cu118-x86_64-linux/activation/_activation_e99cc09_dirty.abi3.so DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:e4f9e647eea40d3d3801d5ee57d4917e4c2e8dbfd87cdfebdc40b1b0a1c571fe
3
- size 2448184
 
 
 
 
build/torch27-cxx11-cu126-x86_64-linux/activation/_activation_e99cc09_dirty.abi3.so DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:a2b72ff2a0f2253e4dfe028842b5f15cabf2647d7812bf4662a2de510ca0c489
3
- size 2518632
 
 
 
 
build/torch27-cxx11-cu128-x86_64-linux/activation/_activation_e99cc09_dirty.abi3.so DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:f4590c852899e4c11ddb74cfad61e26b07490a91f3c09e0fb0874a3fcc1f533e
3
- size 3331456
 
 
 
 
flake.lock DELETED
@@ -1,168 +0,0 @@
1
- {
2
- "nodes": {
3
- "flake-compat": {
4
- "locked": {
5
- "lastModified": 1747046372,
6
- "narHash": "sha256-CIVLLkVgvHYbgI2UpXvIIBJ12HWgX+fjA8Xf8PUmqCY=",
7
- "owner": "edolstra",
8
- "repo": "flake-compat",
9
- "rev": "9100a0f413b0c601e0533d1d94ffd501ce2e7885",
10
- "type": "github"
11
- },
12
- "original": {
13
- "owner": "edolstra",
14
- "repo": "flake-compat",
15
- "type": "github"
16
- }
17
- },
18
- "flake-compat_2": {
19
- "locked": {
20
- "lastModified": 1733328505,
21
- "narHash": "sha256-NeCCThCEP3eCl2l/+27kNNK7QrwZB1IJCrXfrbv5oqU=",
22
- "owner": "edolstra",
23
- "repo": "flake-compat",
24
- "rev": "ff81ac966bb2cae68946d5ed5fc4994f96d0ffec",
25
- "type": "github"
26
- },
27
- "original": {
28
- "owner": "edolstra",
29
- "repo": "flake-compat",
30
- "type": "github"
31
- }
32
- },
33
- "flake-utils": {
34
- "inputs": {
35
- "systems": "systems"
36
- },
37
- "locked": {
38
- "lastModified": 1731533236,
39
- "narHash": "sha256-l0KFg5HjrsfsO/JpG+r7fRrqm12kzFHyUHqHCVpMMbI=",
40
- "owner": "numtide",
41
- "repo": "flake-utils",
42
- "rev": "11707dc2f618dd54ca8739b309ec4fc024de578b",
43
- "type": "github"
44
- },
45
- "original": {
46
- "owner": "numtide",
47
- "repo": "flake-utils",
48
- "type": "github"
49
- }
50
- },
51
- "flake-utils_2": {
52
- "inputs": {
53
- "systems": "systems_2"
54
- },
55
- "locked": {
56
- "lastModified": 1731533236,
57
- "narHash": "sha256-l0KFg5HjrsfsO/JpG+r7fRrqm12kzFHyUHqHCVpMMbI=",
58
- "owner": "numtide",
59
- "repo": "flake-utils",
60
- "rev": "11707dc2f618dd54ca8739b309ec4fc024de578b",
61
- "type": "github"
62
- },
63
- "original": {
64
- "owner": "numtide",
65
- "repo": "flake-utils",
66
- "type": "github"
67
- }
68
- },
69
- "hf-nix": {
70
- "inputs": {
71
- "flake-compat": "flake-compat_2",
72
- "flake-utils": "flake-utils_2",
73
- "nixpkgs": "nixpkgs"
74
- },
75
- "locked": {
76
- "lastModified": 1747919133,
77
- "narHash": "sha256-VvF1naQOvv7yulQ5/cDiaxkNxlh1Y84QMZnderv1szk=",
78
- "owner": "huggingface",
79
- "repo": "hf-nix",
80
- "rev": "9c71e026d6c7c8588ef85a5f7c77f57d598e038c",
81
- "type": "github"
82
- },
83
- "original": {
84
- "owner": "huggingface",
85
- "repo": "hf-nix",
86
- "type": "github"
87
- }
88
- },
89
- "kernel-builder": {
90
- "inputs": {
91
- "flake-compat": "flake-compat",
92
- "flake-utils": "flake-utils",
93
- "hf-nix": "hf-nix",
94
- "nixpkgs": [
95
- "kernel-builder",
96
- "hf-nix",
97
- "nixpkgs"
98
- ]
99
- },
100
- "locked": {
101
- "lastModified": 1748620233,
102
- "narHash": "sha256-VULm9HgGXvo3pyfsPy3SOhoqgkuqbGSaSemvzNUbdIU=",
103
- "owner": "huggingface",
104
- "repo": "kernel-builder",
105
- "rev": "da3340e5b3cbb6086600420f4814b033395788d1",
106
- "type": "github"
107
- },
108
- "original": {
109
- "owner": "huggingface",
110
- "repo": "kernel-builder",
111
- "type": "github"
112
- }
113
- },
114
- "nixpkgs": {
115
- "locked": {
116
- "lastModified": 1747820358,
117
- "narHash": "sha256-fTqsZsUX6M3yeEvgyQvXcbGmT2CaRVyVwsi8eK29Oj4=",
118
- "owner": "danieldk",
119
- "repo": "nixpkgs",
120
- "rev": "d3c1681180717528068082103bf323147de6ab0b",
121
- "type": "github"
122
- },
123
- "original": {
124
- "owner": "danieldk",
125
- "ref": "cudatoolkit-12.9-kernel-builder",
126
- "repo": "nixpkgs",
127
- "type": "github"
128
- }
129
- },
130
- "root": {
131
- "inputs": {
132
- "kernel-builder": "kernel-builder"
133
- }
134
- },
135
- "systems": {
136
- "locked": {
137
- "lastModified": 1681028828,
138
- "narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
139
- "owner": "nix-systems",
140
- "repo": "default",
141
- "rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
142
- "type": "github"
143
- },
144
- "original": {
145
- "owner": "nix-systems",
146
- "repo": "default",
147
- "type": "github"
148
- }
149
- },
150
- "systems_2": {
151
- "locked": {
152
- "lastModified": 1681028828,
153
- "narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
154
- "owner": "nix-systems",
155
- "repo": "default",
156
- "rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
157
- "type": "github"
158
- },
159
- "original": {
160
- "owner": "nix-systems",
161
- "repo": "default",
162
- "type": "github"
163
- }
164
- }
165
- },
166
- "root": "root",
167
- "version": 7
168
- }