keremberke/yolov8m-valorant-detection

Supported Labels

['dropped spike', 'enemy', 'planted spike', 'teammate']

How to use

pip install ultralyticsplus==0.0.23 ultralytics==8.0.21
  • Load model and perform prediction:
from ultralyticsplus import YOLO, render_result

# load model
model = YOLO('keremberke/yolov8m-valorant-detection')

# set model parameters
model.overrides['conf'] = 0.25  # NMS confidence threshold
model.overrides['iou'] = 0.45  # NMS IoU threshold
model.overrides['agnostic_nms'] = False  # NMS class-agnostic
model.overrides['max_det'] = 1000  # maximum number of detections per image

# set image
image = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'

# perform inference
results = model.predict(image)

# observe results
print(results[0].boxes)
render = render_result(model=model, image=image, result=results[0])
render.show()

More models available at: awesome-yolov8-models

Downloads last month
2,673
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model authors have turned it off explicitly.

Dataset used to train keremberke/yolov8m-valorant-detection

Spaces using keremberke/yolov8m-valorant-detection 3

Evaluation results