BriefT5 / README.md
kawinduwijewardhane's picture
Update README.md
c220451 verified
---
language: en
license: mit
tags:
- summarization
- t5
- text-to-text
- model
- fine-tuned
library: transformers
task:
- text-generation
- summarization
---
# Fine-tuned T5 Model for Text Summarization
This model is a fine-tuned version of the T5 model (`t5-small`) for text summarization tasks. It has been trained on a diverse set of text data to generate concise and coherent summaries from input text.
## Model Overview
- **Model Type**: T5 (Text-to-Text Transfer Transformer)
- **Base Model**: `t5-small`
- **Task**: Text Summarization
- **Language**: English (other languages may be supported depending on the dataset used)
## Intended Use
This model is designed to summarize long documents, articles, or any form of textual content into shorter, coherent summaries. It can be used for tasks such as:
- Summarizing news articles
- Generating abstracts for academic papers
- Condensing lengthy documents
- Summarizing customer feedback or reviews
## Model Details
- **Fine-Tuned On**: A custom dataset containing text and corresponding summaries.
- **Input**: Text (e.g., news articles, papers, or long-form content)
- **Output**: A concise summary of the input text
## How to Use
To use this model for text summarization, you can follow the code example below:
```python
from transformers import T5Tokenizer, T5ForConditionalGeneration
# Load the fine-tuned model and tokenizer
model = T5ForConditionalGeneration.from_pretrained("kawinduwijewardhane/BriefT5")
tokenizer = T5Tokenizer.from_pretrained("kawinduwijewardhane/BriefT5")
# Input text for summarization
input_text = "Your long input text here."
# Tokenize and summarize
inputs = tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True)
summary_ids = model.generate(inputs["input_ids"], max_length=150, num_beams=4, early_stopping=True)
# Decode the summary
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
print(summary)
```
### Explanation of the YAML metadata:
- **`language`**: Specifies the language the model supports, in this case, English (`en`).
- **`license`**: Describes the licensing information for your model, here it is set to MIT (you can change it depending on your license).
- **`tags`**: These tags help categorize your model on Hugging Face and make it easier for others to discover. I've added tags like `summarization`, `t5`, `text-to-text`, and `fine-tuned`.
This will help you resolve the warning and provide the necessary metadata for your model card!