|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: roberta-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: roberta-issue-classifier |
|
results: [] |
|
datasets: |
|
- JyotiNayak/political_ideologies |
|
language: |
|
- en |
|
--- |
|
|
|
|
|
|
|
# roberta-issue-classifier |
|
|
|
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on [this](https://huggingface.co/datasets/JyotiNayak/political_ideologies) dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0945 |
|
- Accuracy: 0.9844 |
|
- F1: 0.9844 |
|
|
|
## Model description |
|
|
|
Issue Type Mapping: {'economic': 0, 'environmental': 1, 'family/gender': 2, 'geo-political and foreign policy': 3, 'political': 4, 'racial justice and immigration': 5, 'religious': 6, 'social, health and education': 7} |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| |
|
| 0.5661 | 0.625 | 100 | 0.4350 | 0.9437 | 0.9436 | |
|
| 0.112 | 1.25 | 200 | 0.1488 | 0.975 | 0.9750 | |
|
| 0.0335 | 1.875 | 300 | 0.1262 | 0.9781 | 0.9781 | |
|
| 0.1009 | 2.5 | 400 | 0.1328 | 0.9781 | 0.9781 | |
|
| 0.032 | 3.125 | 500 | 0.0945 | 0.9844 | 0.9844 | |
|
| 0.0074 | 3.75 | 600 | 0.0944 | 0.9781 | 0.9781 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.1 |
|
- Pytorch 2.4.0 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.20.0 |