tts_me_realCS_dataset

This model is a fine-tuned version of karline/tts_me_realCS_dataset on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4252

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 40000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
0.5661 0.1808 100 0.5027
0.5194 0.3616 200 0.4732
0.4983 0.5424 300 0.4571
0.4966 0.7232 400 0.4554
0.4867 0.9040 500 0.4494
0.4808 1.0832 600 0.4493
0.4806 1.2640 700 0.4455
0.4763 1.4447 800 0.4439
0.4733 1.6255 900 0.4427
0.4756 1.8063 1000 0.4377
0.4689 1.9871 1100 0.4357
0.4658 2.1663 1200 0.4343
0.4637 2.3471 1300 0.4342
0.462 2.5279 1400 0.4299
0.4621 2.7087 1500 0.4258
0.4571 2.8895 1600 0.4234
0.4539 3.0687 1700 0.4214
0.4485 3.2495 1800 0.4184
0.4502 3.4303 1900 0.4173
0.4493 3.6111 2000 0.4160
0.4459 3.7919 2100 0.4156
0.444 3.9727 2200 0.4144
0.4405 4.1519 2300 0.4129
0.4411 4.3327 2400 0.4141
0.4403 4.5134 2500 0.4120
0.4411 4.6942 2600 0.4118
0.4396 4.8750 2700 0.4091
0.4345 5.0542 2800 0.4085
0.4348 5.2350 2900 0.4089
0.4363 5.4158 3000 0.4088
0.4325 5.5966 3100 0.4088
0.4325 5.7774 3200 0.4081
0.4345 5.9582 3300 0.4080
0.4332 6.1374 3400 0.4076
0.4321 6.3182 3500 0.4067
0.4273 6.4990 3600 0.4071
0.4309 6.6798 3700 0.4079
0.432 6.8606 3800 0.4057
0.4145 7.0398 3900 0.4057
0.4277 7.2206 4000 0.4053
0.4275 7.4014 4100 0.4045
0.4307 7.5821 4200 0.4054
0.4252 7.7629 4300 0.4044
0.4306 7.9437 4400 0.4048
0.4257 8.1229 4500 0.4042
0.4332 8.3037 4600 0.4049
0.4269 8.4845 4700 0.4041
0.429 8.6653 4800 0.4033
0.4245 8.8461 4900 0.4043
0.4111 9.0253 5000 0.4043
0.4304 9.2224 5100 0.4078
0.4316 9.4032 5200 0.4080
0.4304 9.5840 5300 0.4079
0.431 9.7647 5400 0.4073
0.4325 9.9455 5500 0.4059
0.4293 10.1266 5600 0.4087
0.4285 10.3073 5700 0.4089
0.4279 10.4881 5800 0.4092
0.4295 10.6689 5900 0.4074
0.4319 10.8497 6000 0.4064
0.4152 11.0289 6100 0.4053
0.4209 11.2097 6200 0.4049
0.4285 11.3905 6300 0.4052
0.4258 11.5713 6400 0.4063
0.4302 11.7521 6500 0.4055
0.4274 11.9329 6600 0.4046
0.42 12.1121 6700 0.4055
0.4254 12.2929 6800 0.4042
0.4234 12.4737 6900 0.4050
0.4208 12.6545 7000 0.4064
0.423 12.8353 7100 0.4032
0.4093 13.0145 7200 0.4050
0.4217 13.1953 7300 0.4070
0.422 13.3760 7400 0.4053
0.4198 13.5568 7500 0.4029
0.421 13.7376 7600 0.4032
0.4215 13.9184 7700 0.4052
0.4176 14.0976 7800 0.4042
0.4197 14.2784 7900 0.4040
0.42 14.4592 8000 0.4059
0.423 14.64 8100 0.4045
0.418 14.8208 8200 0.4032
0.4038 15.0 8300 0.4036
0.4213 15.1808 8400 0.4049
0.4175 15.3616 8500 0.4059
0.4186 15.5424 8600 0.4051
0.4181 15.7232 8700 0.4023
0.4136 15.9040 8800 0.4037
0.4165 16.0832 8900 0.4069
0.4164 16.2640 9000 0.4044
0.4158 16.4447 9100 0.4072
0.4145 16.6255 9200 0.4040
0.4158 16.8063 9300 0.4016
0.4206 16.9871 9400 0.4113
0.4135 17.1663 9500 0.4052
0.4134 17.3471 9600 0.4049
0.4145 17.5279 9700 0.4070
0.4138 17.7087 9800 0.4056
0.4152 17.8895 9900 0.4058
0.4151 18.0687 10000 0.4057
0.4135 18.2495 10100 0.4055
0.4114 18.4303 10200 0.4062
0.4111 18.6111 10300 0.4048
0.4128 18.7919 10400 0.4058
0.4092 18.9727 10500 0.4043
0.4118 19.1519 10600 0.4064
0.4131 19.3327 10700 0.4059
0.4104 19.5134 10800 0.4044
0.4157 19.6942 10900 0.4060
0.4133 19.8750 11000 0.4051
0.4109 20.0542 11100 0.4058
0.4128 20.2350 11200 0.4043
0.4101 20.4158 11300 0.4055
0.4096 20.5966 11400 0.4043
0.4101 20.7774 11500 0.4031
0.4092 20.9582 11600 0.4062
0.41 21.1374 11700 0.4052
0.4101 21.3182 11800 0.4064
0.407 21.4990 11900 0.4049
0.4106 21.6798 12000 0.4068
0.4077 21.8606 12100 0.4035
0.3941 22.0398 12200 0.4071
0.4087 22.2206 12300 0.4110
0.4097 22.4014 12400 0.4045
0.4096 22.5821 12500 0.4056
0.4099 22.7629 12600 0.4052
0.4064 22.9437 12700 0.4082
0.4065 23.1229 12800 0.4071
0.405 23.3037 12900 0.4071
0.4069 23.4845 13000 0.4062
0.405 23.6653 13100 0.4069
0.4078 23.8461 13200 0.4057
0.394 24.0253 13300 0.4079
0.4063 24.2061 13400 0.4075
0.4087 24.4122 13500 0.4092
0.4094 24.5930 13600 0.4069
0.4104 24.7738 13700 0.4066
0.4076 24.9546 13800 0.4107
0.4094 25.1356 13900 0.4087
0.4061 25.3164 14000 0.4059
0.4095 25.4972 14100 0.4082
0.4069 25.6780 14200 0.4099
0.4101 25.8588 14300 0.4076
0.3903 26.0380 14400 0.4075
0.4075 26.2188 14500 0.4102
0.4091 26.3995 14600 0.4092
0.4095 26.5803 14700 0.4070
0.4065 26.7611 14800 0.4088
0.4099 26.9419 14900 0.4088
0.4072 27.1211 15000 0.4088
0.404 27.3019 15100 0.4076
0.4072 27.4827 15200 0.4088
0.4058 27.6635 15300 0.4074
0.4089 27.8443 15400 0.4084
0.3922 28.0235 15500 0.4076
0.4069 28.2043 15600 0.4118
0.406 28.3851 15700 0.4077
0.4039 28.5659 15800 0.4084
0.4076 28.7467 15900 0.4056
0.4057 28.9275 16000 0.4067
0.4065 29.1067 16100 0.4081
0.407 29.2875 16200 0.4092
0.4061 29.4682 16300 0.4150
0.4049 29.6490 16400 0.4074
0.4057 29.8298 16500 0.4068
0.3907 30.0090 16600 0.4106
0.4069 30.1898 16700 0.4098
0.399 30.3706 16800 0.4051
0.4066 30.5514 16900 0.4100
0.403 30.7322 17000 0.4073
0.4052 30.9130 17100 0.4060
0.4007 31.0922 17200 0.4074
0.4053 31.2730 17300 0.4097
0.4016 31.4538 17400 0.4130
0.4034 31.6346 17500 0.4100
0.3997 31.8154 17600 0.4098
0.4054 31.9962 17700 0.4088
0.403 32.1754 17800 0.4127
0.4043 32.3562 17900 0.4080
0.4041 32.5369 18000 0.4069
0.4046 32.7177 18100 0.4078
0.401 32.8985 18200 0.4081
0.4019 33.0777 18300 0.4113
0.4005 33.2585 18400 0.4083
0.4058 33.4393 18500 0.4083
0.4031 33.6201 18600 0.4089
0.4027 33.8009 18700 0.4092
0.4005 33.9817 18800 0.4102
0.3994 34.1609 18900 0.4086
0.4017 34.3417 19000 0.4113
0.4002 34.5225 19100 0.4114
0.4018 34.7033 19200 0.4117
0.3996 34.8841 19300 0.4089
0.402 35.0633 19400 0.4101
0.3999 35.2441 19500 0.4125
0.401 35.4249 19600 0.4144
0.3983 35.6056 19700 0.4122
0.4008 35.7864 19800 0.4106
0.4036 35.9672 19900 0.4084
0.3991 36.1464 20000 0.4149
0.4022 36.3272 20100 0.4183
0.3966 36.5080 20200 0.4134
0.3977 36.6888 20300 0.4113
0.4031 36.8696 20400 0.4136
0.3977 37.0488 20500 0.4127
0.3951 37.2296 20600 0.4145
0.3977 37.4104 20700 0.4126
0.3984 37.5912 20800 0.4091
0.4003 37.7720 20900 0.4107
0.3994 37.9528 21000 0.4102
0.3996 38.1320 21100 0.4132
0.3976 38.3128 21200 0.4152
0.3982 38.4936 21300 0.4085
0.3993 38.6744 21400 0.4112
0.3969 38.8551 21500 0.4104
0.3845 39.0344 21600 0.4127
0.3985 39.2151 21700 0.4116
0.3949 39.3959 21800 0.4121
0.3998 39.5767 21900 0.4108
0.399 39.7575 22000 0.4106
0.3994 39.9383 22100 0.4164
0.398 40.1175 22200 0.4125
0.396 40.2983 22300 0.4138
0.3953 40.4791 22400 0.4104
0.3951 40.6599 22500 0.4190
0.3967 40.8407 22600 0.4120
0.3809 41.0199 22700 0.4141
0.3966 41.2007 22800 0.4141
0.3965 41.3815 22900 0.4132
0.396 41.5623 23000 0.4114
0.3949 41.7431 23100 0.4120
0.3989 41.9238 23200 0.4149
0.3962 42.1031 23300 0.4115
0.3957 42.2838 23400 0.4131
0.3951 42.4646 23500 0.4153
0.3953 42.6454 23600 0.4147
0.3952 42.8262 23700 0.4110
0.3817 43.0054 23800 0.4150
0.3987 43.1862 23900 0.4156
0.3946 43.3670 24000 0.4156
0.3939 43.5478 24100 0.4123
0.3938 43.7286 24200 0.4161
0.3958 43.9094 24300 0.4183
0.3955 44.0886 24400 0.4157
0.3949 44.2694 24500 0.4145
0.3951 44.4502 24600 0.4151
0.3982 44.6310 24700 0.4167
0.3962 44.8118 24800 0.4133
0.3927 44.9925 24900 0.4180
0.3951 45.1718 25000 0.4119
0.3937 45.3525 25100 0.4153
0.3942 45.5333 25200 0.4152
0.3968 45.7141 25300 0.4141
0.3935 45.8949 25400 0.4121
0.3912 46.0741 25500 0.4161
0.391 46.2549 25600 0.4120
0.3942 46.4357 25700 0.4167
0.3931 46.6165 25800 0.4157
0.3933 46.7973 25900 0.4171
0.3954 46.9781 26000 0.4175
0.3926 47.1573 26100 0.4124
0.3929 47.3381 26200 0.4148
0.3955 47.5189 26300 0.4183
0.3963 47.6997 26400 0.4152
0.3928 47.8805 26500 0.4154
0.3929 48.0597 26600 0.4140
0.3945 48.2405 26700 0.4200
0.3938 48.4212 26800 0.4159
0.39 48.6020 26900 0.4132
0.3922 48.7828 27000 0.4195
0.3928 48.9636 27100 0.4168
0.3931 49.1428 27200 0.4177
0.3915 49.3236 27300 0.4157
0.3911 49.5044 27400 0.4167
0.3919 49.6852 27500 0.4188
0.3936 49.8660 27600 0.4137
0.3924 50.0452 27700 0.4162
0.3911 50.2260 27800 0.4165
0.3942 50.4068 27900 0.4186
0.3895 50.5876 28000 0.4165
0.3907 50.7684 28100 0.4217
0.3885 50.9492 28200 0.4166
0.3918 51.1284 28300 0.4171
0.3885 51.3092 28400 0.4153
0.3899 51.4899 28500 0.4161
0.3933 51.6707 28600 0.4176
0.3911 51.8515 28700 0.4160
0.3771 52.0307 28800 0.4169
0.393 52.2115 28900 0.4188
0.3901 52.3923 29000 0.4145
0.3918 52.5731 29100 0.4176
0.3901 52.7539 29200 0.4179
0.3928 52.9347 29300 0.4179
0.3883 53.1139 29400 0.4172
0.3886 53.2947 29500 0.4205
0.3876 53.4755 29600 0.4184
0.3939 53.6563 29700 0.4168
0.3906 53.8371 29800 0.4165
0.3763 54.0163 29900 0.4173
0.3902 54.1971 30000 0.4165
0.3886 54.3779 30100 0.4175
0.3889 54.5586 30200 0.4191
0.3926 54.7394 30300 0.4196
0.389 54.9202 30400 0.4182
0.3921 55.0994 30500 0.4196
0.3923 55.2802 30600 0.4196
0.3882 55.4610 30700 0.4202
0.3906 55.6418 30800 0.4187
0.3902 55.8226 30900 0.4187
0.3751 56.0018 31000 0.4189
0.3874 56.1826 31100 0.4208
0.3907 56.3634 31200 0.4198
0.3915 56.5442 31300 0.4197
0.3872 56.7250 31400 0.4216
0.3905 56.9058 31500 0.4208
0.3893 57.0850 31600 0.4207
0.3904 57.2658 31700 0.4228
0.3872 57.4466 31800 0.4217
0.3878 57.6273 31900 0.4205
0.3899 57.8081 32000 0.4220
0.3865 57.9889 32100 0.4212
0.388 58.1681 32200 0.4181
0.3878 58.3489 32300 0.4194
0.3917 58.5297 32400 0.4188
0.3894 58.7105 32500 0.4202
0.3876 58.8913 32600 0.4224
0.3903 59.0705 32700 0.4207
0.3887 59.2513 32800 0.4200
0.3871 59.4321 32900 0.4208
0.3867 59.6129 33000 0.4220
0.3864 59.7937 33100 0.4187
0.3881 59.9745 33200 0.4215
0.3853 60.1537 33300 0.4197
0.3883 60.3345 33400 0.4202
0.3883 60.5153 33500 0.4189
0.3879 60.6960 33600 0.4198
0.3919 60.8768 33700 0.4195
0.3898 61.0560 33800 0.4199
0.3877 61.2368 33900 0.4218
0.3869 61.4176 34000 0.4216
0.3898 61.5984 34100 0.4209
0.3877 61.7792 34200 0.4201
0.3857 61.96 34300 0.4216
0.3869 62.1392 34400 0.4207
0.3863 62.32 34500 0.4227
0.387 62.5008 34600 0.4216
0.386 62.6816 34700 0.4227
0.3885 62.8624 34800 0.4200
0.3726 63.0416 34900 0.4223
0.3894 63.2224 35000 0.4240
0.386 63.4032 35100 0.4219
0.3875 63.5840 35200 0.4217
0.3854 63.7647 35300 0.4207
0.3849 63.9455 35400 0.4207
0.3879 64.1247 35500 0.4229
0.3864 64.3055 35600 0.4216
0.3845 64.4863 35700 0.4219
0.3853 64.6671 35800 0.4200
0.3927 64.8479 35900 0.4214
0.3747 65.0271 36000 0.4207
0.3858 65.2079 36100 0.4222
0.3879 65.3887 36200 0.4225
0.3886 65.5695 36300 0.4222
0.3851 65.7503 36400 0.4222
0.3875 65.9311 36500 0.4239
0.3859 66.1103 36600 0.4231
0.3878 66.2911 36700 0.4227
0.3873 66.4719 36800 0.4257
0.385 66.6527 36900 0.4239
0.3853 66.8334 37000 0.4236
0.3691 67.0127 37100 0.4251
0.3888 67.1934 37200 0.4256
0.3844 67.3742 37300 0.4222
0.387 67.5550 37400 0.4233
0.3853 67.7358 37500 0.4224
0.3846 67.9166 37600 0.4237
0.3869 68.0958 37700 0.4246
0.3827 68.2766 37800 0.4232
0.3838 68.4574 37900 0.4225
0.3849 68.6382 38000 0.4245
0.3885 68.8190 38100 0.4241
0.3878 68.9998 38200 0.4238
0.3858 69.1790 38300 0.4247
0.3853 69.3598 38400 0.4247
0.3883 69.5406 38500 0.4248
0.3895 69.7214 38600 0.4258
0.3858 69.9021 38700 0.4236
0.3876 70.0814 38800 0.4241
0.3865 70.2621 38900 0.4248
0.3859 70.4429 39000 0.4259
0.3872 70.6237 39100 0.4247
0.3823 70.8045 39200 0.4247
0.385 70.9853 39300 0.4251
0.3852 71.1645 39400 0.4252
0.3858 71.3453 39500 0.4255
0.3826 71.5261 39600 0.4253
0.3877 71.7069 39700 0.4251
0.3861 71.8877 39800 0.4253
0.3845 72.0669 39900 0.4248
0.3857 72.2477 40000 0.4252

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.2.1
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
109
Safetensors
Model size
144M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for karline/tts_me_realCS_dataset

Unable to build the model tree, the base model loops to the model itself. Learn more.