classifier_adapter / README.md
karinegabsschon's picture
karinegabsschon/classifier_adapter
4209a31 verified
metadata
base_model: bert-base-chinese
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: classifier_adapter
    results: []

classifier_adapter

This model is a fine-tuned version of bert-base-chinese on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0386
  • Accuracy: 0.9875
  • Precision: 0.8841
  • Recall: 0.7947
  • F1: 0.8283
  • Ap: 0.8850

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 0
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 12

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Ap
No log 0.38 100 0.1590 0.9571 0.0 0.0 0.0 0.1046
No log 0.75 200 0.1578 0.9571 0.0 0.0 0.0 0.1808
No log 1.13 300 0.1185 0.9653 0.0899 0.0599 0.0680 0.4391
No log 1.51 400 0.0898 0.9724 0.2199 0.1409 0.1617 0.6479
0.1405 1.89 500 0.0774 0.9750 0.3319 0.2273 0.2575 0.7417
0.1405 2.26 600 0.0683 0.9771 0.4118 0.3002 0.3294 0.7791
0.1405 2.64 700 0.0616 0.9804 0.6207 0.4336 0.4810 0.8187
0.1405 3.02 800 0.0556 0.9821 0.7210 0.4875 0.5435 0.8380
0.1405 3.4 900 0.0519 0.9830 0.7329 0.5224 0.5839 0.8566
0.0598 3.77 1000 0.0486 0.9846 0.7818 0.6063 0.6615 0.8629
0.0598 4.15 1100 0.0469 0.9853 0.8223 0.6807 0.7248 0.8633
0.0598 4.53 1200 0.0457 0.9856 0.8521 0.7235 0.7663 0.8666
0.0598 4.91 1300 0.0439 0.9859 0.8436 0.6955 0.7435 0.8753
0.0598 5.28 1400 0.0424 0.9862 0.8715 0.6964 0.7496 0.8739
0.0399 5.66 1500 0.0415 0.9869 0.8695 0.7621 0.7994 0.8772
0.0399 6.04 1600 0.0416 0.9865 0.8700 0.7670 0.8039 0.8853
0.0399 6.42 1700 0.0401 0.9871 0.8687 0.7686 0.8047 0.8846
0.0399 6.79 1800 0.0405 0.9867 0.8734 0.7851 0.8167 0.8848
0.0399 7.17 1900 0.0410 0.9865 0.8600 0.7708 0.8057 0.8770
0.0315 7.55 2000 0.0393 0.9873 0.8869 0.7718 0.8158 0.8819
0.0315 7.92 2100 0.0385 0.9871 0.8747 0.7861 0.8196 0.8856
0.0315 8.3 2200 0.0386 0.9877 0.8863 0.7856 0.8227 0.8857
0.0315 8.68 2300 0.0390 0.9869 0.8695 0.7949 0.8221 0.8830
0.0315 9.06 2400 0.0391 0.9872 0.8685 0.8081 0.8311 0.8830
0.026 9.43 2500 0.0386 0.9875 0.8841 0.7947 0.8283 0.8850
0.026 9.81 2600 0.0390 0.9871 0.8615 0.8064 0.8264 0.8840
0.026 10.19 2700 0.0386 0.9873 0.8689 0.8023 0.8264 0.8859
0.026 10.57 2800 0.0386 0.9873 0.8737 0.7986 0.8265 0.8860

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.2.1+cu121
  • Tokenizers 0.15.2